Industry Perspectives on HIV Remission/Cure Research in Pediatric Populations

James F. Demarest, PhD

ViiV Healthcare Head, Clinical Virology & Immunology Global Medical Lead, HIV Remission & Cure

Acknowledgements

Hedy Teppler, MD

Merck

Executive Director, Merck Clinical Research – Infectious Diseases

Katy Hayward, MD

ViiV Healthcare Global Medical Lead, Pediatrics

Robert "Skip" Nelson, MD PhD

Johnson & Johnson

Senior Director, Pediatric Drug Development

Child Health Innovation Leadership Dept. (CHILD)

Disclaimer

The questions and comments highlighted during the course of the presentation and discussion are intended to be general in nature and do not reflect a specific strategy by ViiV Healthcare, Merck, or Johnson & Johnson.

Two Overarching Objectives for Pediatric HIV

 Optimal treatment with age-/weight-appropriate formulations and fixed dose combinations (FDCs) for infants, children, and adolescents

• Support for their families, care-givers, and communities where they reside that are affected by HIV

These also apply to bringing forward treatments/treatment strategies for HIV remission and ultimately cure in the pediatric space.

People Living with HIV...

People Living with HIV (PLWHIV)

>36,700,000

Women, Men, and Children ~2.1 Million Children (<15 years of age)

~4-6% of all PLHIV

WHO HIV Department, Dec 2016; http://www.who.int/hiv/data/epi_core_2016.png?ua=1

People Living with HIV...

• 43% for Children LHIV**

http://www.unaids.org/en/resources/documents/2014/90-90-90;

* http://www.who.int/hiv/data/cascade_global_2016.png?ua=1;

** UNICEF, UNAIDS, WHO Global AIDS Monitoring Data, 2017.

Preferred and Alternative Regimens by Age and Drug Class*

Regimen	Core Agent		Months			Years of Life			
		<3	> 3	> 2	> 3	>6		> 12	
INSTI + 2 NRTI	DTG								
	EVG								
	RAL								
NNRTI + 2 NRTI	EFV								
	NVP								
	RPV								
PI + 2 NRTI	ATV/r								
	DRV/r								
	LPV/r								

* Adapted from "Guidelines for the Use of Antiretroviral Agents in Pediatric HIV Infection" <u>http://aidsinfo.nih.gov</u>; additional details in speaker notes

People Living with HIV...

<1% as "Elite Controllers"¹

?% as "Post-Treatment Controllers"²

¹ Olson et al., PLoS ONE 2014;
 ² Saez-Cirion et al., PLoS Pathogens 2013;
 ³Persaud et al., NEJM 2013;
 ⁴Saez-Cirion et al., IAS2015, Vancouver, #MOAA0105LB;
 ⁵Violari et al. IAS2017 Paris, #TUPDB0106LB

Virologic Rebound Post-Treatment Interruption: CHER Trial

- 70% probability of rebound by 2 months, 99% by 8 months
- 1 Child maintained virologic suppression after more than 8 years off ART

Numbers on the KM curve indicate the times where censoring occurred

Adapted from Violari et al., CROI2018 Boston, #137 and Violari et al. IAS2017 Paris, #TUPDB0106LB

Virologic Rebound Post-Treatment Interruption: CHER Trial

- 70% probability of rebound by 2 months, 99% by 8 months
- 1 Child maintained virologic suppression after more than 8 years off ART

What duration of sustained virologic suppression do we need to achieve with a curative agent/regimen?

Numbers on the KM curve indicate the times where censoring occurred

Adapted from Violari et al., CROI2018 Boston, #137 and Violari et al. IAS2017 Paris, #TUPDB0106LB

People Living with HIV...

Women, Men,Women, Men,People Living with "the Berlin Patient"*and Childrenand ChildrenHIV Remission

10 yr anniversary in Feb 2017!

*Hutter et al., NEJM 2009; 360:692-698.

HIV Remission and Cure

Goal	Clinical Phenotype	Other terms
Cure	 HIV negative* No need for ARVs No disease progression 	EradicationSterilizing Cure
Remission	 HIV positive* Absence of viral rebound off ARVs for an extended period of time No or delayed disease progression 	 Functional Cure

➢ We all aspire to achieve HIV Cure, and will continue until we do.

➢ HIV Remission may be more attainable in the near term.

Remission/Cure will (likely) be a multi-step, combination approach.

*HIV reservoir in blood and/or tissue; HIV DNA, RNA, Proteins

How should/do we approach trying to achieve HIV remission and ultimately cure for the >36,700,000 PLHIV?

How should/do we approach trying to achieve HIV remission and ultimately cure for the >36,700,000 PLHIV?

- > Safe
- Simple to administer
- Scalable

Chun, Moir and Fauci, Nature Immunology 2015

How should/do we approach trying to achieve HIV remission and ultimately cure for the >2,100,000 Children LHIV?

These same factors also apply to pediatrics.....

- > Safe
- Simple to administer
- Scalable

Chun, Moir and Fauci, Nature Immunology 2015

What knowledge/experience applies from developing ARVs for pediatrics?

Experience From Development of Pediatric ARVs

Area	Experience	Challenges
Study Design/Conduct	Plasma HIV RNA suppression	Enrolment time and/or study population
Dose/Dose Frequency	Agent Specific	Weight bands Age
Formulation(s)	Agent Specific	User friendly
Regulatory	Submit Pediatric Plans* by the time of Phase 3 Studies for Adults	Potential for different opinions/requirements Western regulators for end users in Africa/Asia

* Pediatric Study Plan (PSP) for FDA and Pediatric Investigation Plan (PIP) for EMA

Clinical Development Programs for Pediatric ARVs

- Generally well defined and relies upon an accepted surrogate marker for Registration
 - plasma viral load suppression in a relatively short time period such as 24 or 48 weeks

The Roadmap to HIV Remission/Cure

How do we find our way?

- Which reservoir(s) and by what measure?
- What clinical endpoint(s) for Registration?

How do we find our way?

- > Which reservoir(s) and by what measure?
- What clinical endpoint(s) for Registration?

For adults, adolescents, children, and neonates!

Key point

- Clinical development programs for pediatric ARVs is generally well defined and relies upon an accepted surrogate marker for Registration
 - plasma viral load suppression in a relatively short time period such as 24 or 48 weeks
- Plasma viral load suppression and associated trial designs do not apply to developing agents/regimens for remission and ultimately cure

Are there "remission/cure" knowledge gaps that impact development of a curative agent/regimen for pediatric HIV infection?

- Are all approaches evaluated in adults appropriate?
- > Is the safety profile required different from adults?
- Are viral reservoirs the same?
- ➢ Is Immune context the same?

Unique Immunity in Infants: Favorable to Achieving HIV Remission

Typical pediatric immune response compared to an adult:

Takata, Blood 2012; Gibbons, Nature Med 2014; Ananworanich, AIDS 2014; Uprety, CID 2015; van Zyl, JID 2015 Martinez-Bonet CID 2015; Wang, Leuk Biol 2015; Klein, Lancet ID 2015; Palma, BMC ID 2016

Slide Courtesy Dr Jintanat Ananworanich, US MHRP

In the absence of a clinically validated surrogate marker as a Regulatory accepted endpoint for "remission" or "cure", how do we determine clinical relevance?

- Analytical treatment interruption (ATI)?
- ➢ How to design ATI? Who to allow?
- How long is relevant for Regulatory file?

Questions

