

Non-invasive diagnostic biomarkers

Liver Forum, November 12th, 2015

Rohit Loomba , MD, MHSc

Professor of Medicine (with tenure)

Director, NAFLD Research Center,

Division of Gastroenterology, Department of Medicine,

Division of Epidemiology, Department of Family and Preventive Medicine, University of California at San Diego, La Jolla, CA Email: roloomba@ucsd.edu

Outline

- Definition of biomarker
- Clinical need
- Current status
- Approach to successful biomarker

Biomarker

• A biomarker

 is a characteristic that is objectively measured and evaluated as an indication of normal biologic processes, pathogenic processes, or pharmacological responses to a therapeutic intervention.

• Composite biomarker

- Surrogate biomarker or end-point
 - Prince Criteria (modified for understanding and application in NASH)
 - Positive or elevated or decreased only in disease state
 - Disease state gets worse it gets worse irrespective of the intervention
 - Disease state improves it improves irrespective of the intervention
 - Predicts long-term risk of clinical outcome
 - Change in biomarker predicts outcome

Types of biomarker

- Diagnostic
- Prognostic
- Predictive
- Pharmacodynamic

Number of trials in NASH/NAFLD: October 2015

Clinicaltrials.gov

Natural history of NASH

Key histologic predictors of mortality in NAFLD

- Presence of advanced fibrosis
- Presence of fibrosis
- Presence of NASH

Loomba et al. Gastroenterology 2015

Building a biomarker program in NASH

AUROC

Discrimination between binary outcomes

- 0.9-1.0 = Excellent
- 0.8-0.9 = Good
- 0.7-0.8 = Fair
- 0.6-0.7 = Poor
- 0.5-0.6 = bad

1-specificity

Diagnostic test characteristics

	NASH	NASH	
	Yes	No	
Test +	а	b	a + b
Test -	С	d	c + d
	a + c	b + d	

NPV = d/c + dPPV = a/a + b

As prevalence of disease increases PPV increases

Performance of CPR

Outcome	Study	AUROC	AUROC
NASH	N-Tetri et al. (NASH-CRN)		
	AST+ALT+AST/ALT	0.71	N/A
	36 variables	0.79	N/A
Advanced fibrosis	N-Tetri et al. (NASH-CRN)		
(stage 3 or 4)	AST+ALT+AST/ALT	0.73	N/A
	36 variables	0.85	N/A
	Angulo et al. NAFLD Fib Score	0.88	0.82
	Age, BMI, PLT, Alb, AST/ALT		
	Ratziu et al. BAAT (>1)	ND	N/A
	BMI, ALT, Age, TG		
	Harrison et al. BARD (≥ 2)	0.81	0.78
	BMI, AST/ALT, DM		
	Cales et al.	0.92	0.95
	Glu, AST, PLT, Fer, Weight, Age,		

Types of biomarkers

- Molecular
 - Genomic
 - Proteomic
 - CK-18
 - ELF
 - HA
 - RBP-4
 - IU panel
 - Younossi panel
 - Lipidomic
 - Oxidized FA
 - Non-HDL cholesterol
 - Small dense LDL
 - Eicasanoids
 - Metabolomic
 - Hybrid panels
 - NAFIC panel

- Imaging
 - MR-based
 - MRI-PDFF
 - MRS
 - MRE
 - Diffusion-weighted imaging
 - Multiscan
 - Ultrasound
 - USG
 - VCTE
 - ARFI/SWE
 - **CT**

Performance of biomarkers

Outcome	Study	AUROC	AUROC
NASH	Feldstein et al. CK-18 Feldstein et al. CK-18, sFasL Feldstein et al. oXNASH (13-HODE/LA, age, BMI, AST) Younossi et al. NASH Diagnostics Poynard et al. Nash Test Palekar et al. HA + Clinical model	0.83 0.93 0.83 0.98 0.79 0.76	0.82 0.79 N/A 0.72 0.78 N/A
Advanced fibrosis (stage 3 or 4)	Loomba et al. Lipidomic Guha et al. ELF Corgenix Inc. HA (NASH-CRN*) Hepa score (NASH-CRN*) PIIINP TIMP-1	1.00 0.9 0.83 0.80 0.69 0.70	N/A 0.82 (0.85*) 0.82 N/A

sFasL, soluble FAS ligand, HODA, hydroxy-octadecadienoic acid; LA, linoleic acid, hyaluronic acid (HA), amino-terminal propeptide of type III collagen (PIIINP), and tissue inhibitor of metalloproteinase 1 (TIMP-1)

Key clinical issues for assessing response

Approach to biomarkers/endpoints

Caveats: Efficiency of phase 1 and 2, and effectiveness of phase 3 and 4 15

Loomba. CGH 2014

Hepatic Fibrogenesis Measured from Liver Biopsies

Collagen Synthesis Rate is Higher in Patients with NASH

Hepatic collagen FSR was significantly higher in patients with NASH vs NAFL (with high variability in the NASH patient group)

Collagen FSR: NASH vs NAFL

Kinemed and UCSD collaboration

Unmet need in NAFLD

- Initial assessment:
 - <u>Need non-invasive biomarkers to answer following</u>
 - Presence of NASH
 - Presence of NASH with fibrosis
 - Presence of advanced fibrosis
 - Risk of hepatic decompensation and mortality
- Predicting treatment response:
 - <u>Need therapy to reverse NASH and biomarkers to predict</u> <u>response to treatment</u>
 - Resolution of or improvement in NASH (inflammation/ballooning)
 - Improvement in one stage of fibrosis

Goals of predicting treatment response in NASH

Predicting treatment response

- Improvement in liver fat content (steatosis)
 - MRI/MRS (Most robust, precise accurate and quantitative measure)
- Resolution of or improvement in NASH (inflammation/ballooning)
 - Biopsy
- Improvement in fibrosis
 - Unreliable assessment so far
- Reduction in the risk of hepatic decompensation (ascites, variceal bleeding, hepatic encephalopathy, and HCC) and mortality
 - Liver disease, CVD or cancer
 - NO DATA

Fat (TG) has a chemical signature

This chemical signature can be detected *directly* by magnetic resonance spectroscopy (MRS)

Performed properly, MRS quantifies the *proton density fat fraction (PDFF),* a standardized measure of liver tissue [TG]

Limitations of MRS

- One 8cm³ voxel
- Not available on routine scanners
- Requires expertise

Imaging method to estimate PDFF would have advantages....

> Thomsen MRI 1994 Hamilton JMRI 2009 Hamilton NMR Biomed. 2011 Reeder JMRI 2011

MR Imaging Methods to Estimate PDFF

Magnitude data-based MRI

Complex data-based MRI

MRI-PDFF addresses confounding factors, unlike conventional in-phase and opposed-phase MRI-PDFF **not** affected by

- Scanner field strength, manufacturer
- Patient factors: age, sex, BMI, etiology of liver disease
- Concomitant liver abnormalities: iron overload, necroinflammation MRI-PDFF robust to parameter changes Acquisition 12-25 seconds

Yu MRM 2008 Bydder MRI 2008 Bydder MRI 2010 Hansen MRI 2012 Kang Invest Radiol 2012 Kuhn Radiology 2012 Tang Radiology 2013

Co-localized MRI-PDFF and cross-validated with MRS

- PDFF recorded in regions of interests (ROI)s ~300-400mm²
- The same 3 ROIs in each of the 9 liver segments measured at baseline and post-treatment.
- Each segment fat fraction = average 3 ROIs
- Total liver fat fraction = average 27 ROIs

Le et al. Hepatology 2012

Imaging biomarkers of fibrosis: Overview

- Fibrosis has *no molecular signature* that can be detected by current imaging techniques
- All imaging tests for fibrosis attempt to detect fibrosis *indirectly*.
- Many imaging biomarkers proposed: stiffness, diffusion, perfusion, metabolites, image texture,...
- Leading biomarker is liver "stiffness" (or "elasticity") and its family of related parameters
 - shear wave speed, Young's elastic modulus, shear elastic modulus, shear complex modulus, ...
- **Rationale:** collagen deposition associated with fibrosis imparts parenchymal rigidity
- Imaging tests that assess stiffness = "elastography"

Accuracy of MRE in non-invasive diagnosis of advanced fibrosis in NAFLD

Loomba et al. Hepatology 2014

MOZART Trial Design: Ezetimibe vs Placebo

Design: Randomized, double-blind, allocation-concealed, placebo-controlled, clinical trial

First trial to assess 2D and 3D MRE in NASH

Caveats associated with available imaging modalities

- Transient elastography or ARFI or other ultrasound-based test have following limitations:
 - Obesity
 - Ascites
 - Acute Inflammation
 - Cirrhosis

- MRE improves upon all except
 - Iron Overload
 - Acute Inflammation

- Depth of assessment
- Total volume or surface area of the liver covered
- MRE is more precise, accurate, reproducible not affected by obesity, ascites
- US-based and fibroscan point-of-care, ease of use, more access

Hepatic steatosis quantification as an example

	MRS	MRI/MRE	US
Measurement	Directly measures differences in water and fat peaks on a resonance frequency domain	Indirect CSI assessment of signal interface between water and fat peaks during OP and IP echoes	Assessment through proxies (i.e. attenuation and echogenicity)
Dynamic Range	Single area (8cm ³ voxel) manually placed in liver parenchyma using 3-plane localizing imaging	Quantification over a full dynamic range (0 – 100%) throughout parenchyma	Limited when overall content of hepatic steatosis is < 20%
Application	Not available on routine scanners and requires expertise	Readily applied to routine scanners with some expertise required	Readily available in routine practice for use
Accuracy	High diagnostic accuracy not significantly impacted by demographics, histologic activity, or co- existing hepatic conditions	High diagnostic accuracy not significantly impacted by demographics, histologic activity, or co- existing hepatic conditions	Modest diagnostic accuracy; significantly limited by demographics (obesity), and co-existing hepatic conditions
Reliability	High precision with minimal variability	Higher precision and lower variability than MRS and histologic assessments	Modest reliability and agreement with training
Responsivenes s	Responsive to changes in steatosis in single area	Highly responsive to changes in steatosis throughout parenchyma	Limited responsiveness and unable to co-localize ROI for response
Co-localization of fibrosis	Requires alternative imaging modality for co- localizing elasticity	Co-localization with MRE	Potential to co-localize with ultrasound elastography techniques

Summary: What does the biomarker need to do?

- Imaging/Omic/based biomarkers
 - Cross-sectional association
 - Diagnostic intent
 - Screening population
 - Validation in a larger, multicenter-cohort
 - Diagnostic intent
 - Screening population
 - High-risk groups
 - Longitudinal changes with treatment
 - Change in biomarker accurately predicts change in disease states
 - Predicts treatment response
 - Biomarkers shows improvement or worsening of disease on intervention
 - Predicts long-term prognosis
 - Today's level accurately predict the risk of hepatic decompensation in future

Thank you

Email: roloomba@ucsd.edu Web: http://<u>fattyliver.ucsd.edu</u>

Research supported by

- 1. American Gastroenterology Association-Research Scholar Award
- 2. The T Franklin Williams Scholars Program
- 3. R01, NIDDK, NIH
- 4. U01, NASH-CRN, NIDDK, NIH
- 5. K23, Genetic epidemiology of NAFLD, NIDDK, NIH
- 6. Investigator Initiated Research Grant Daiichi Sankyo Inc
- 7. Investigator Initiated Research Grant-1 Merck Inc
- 8. National Science Foundation
- 9. C-Treat, Digestive Disease Center, UCSD, NIDDK, NIH
- 10. Investigator Initiated Research Grant- 2 Merck Inc