

zafing

The Global PBC Study Gro

EASL, Vienna 2015

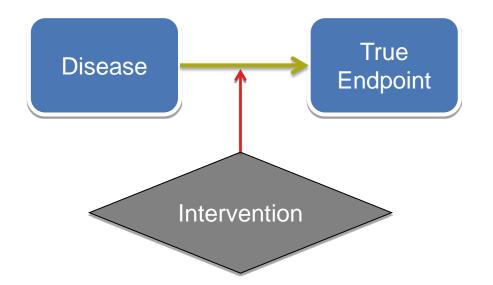
Bettina E Hansen, PhD Erasmus MC University Medical Centre,

Rotterdam, the Netherlands

Background

Since 1990 standard treatment of Primary Biliary Cirrhosis (PBC): Ursodeoxycholic acid (UDCA)

- Response to UDCA is for some patients suboptimal
- Continued need for new therapeutic options in PBC

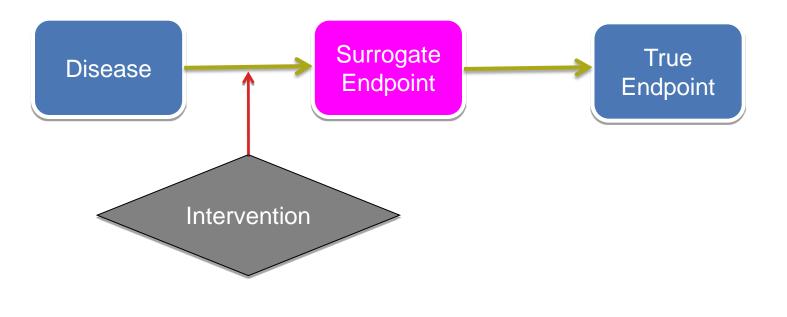

Entering a new era with new treatment options for PBC

Trial setting

- Choice of endpoint
- Meet criteria of regulatory requirements
- Identification of a surrogate endpoint

Erasmus MC

True endpoint problematic in PBC


PBC: Slowly progressive, chronic and rare disease most patients present with early disease
 → trials 8 – 10 years

Can we use surrogate endpoints?

Erasmus MC

Requirements of a surrogate endpoint

- A <u>validated</u> substitute for the true endpoint
- Changes observed in the surrogate endpoint is expected to reflect changes in the true endpoint

Erasmus MC

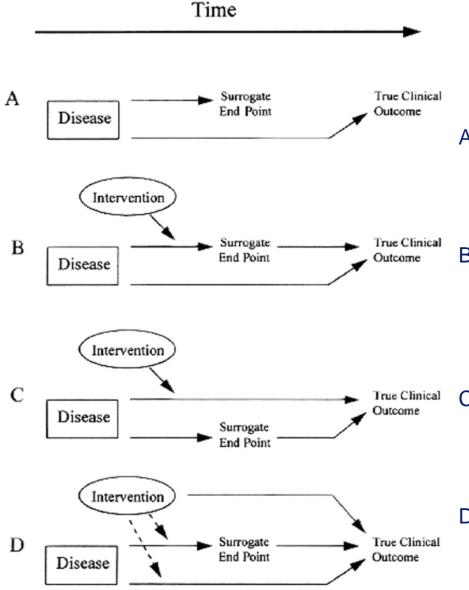
Prentice, Stat in Med; 1989

Response Criteria in UDCA treated PBC

I			_	
Criteria Author	Endpoint criteria	Endpoint	Reference	
Barcelona Parès	ALP 40% decrease or normalization	Ltx-free survival	Gastroenterology 2006	
Paris I Corpechot	ALP < 3 x ULN and AST < 2 x ULN and bilirubin < 1 mg/dl	Ltx-free survival	Hepatology 2008	
Paris II Corpechot	ALP < 1.5 x ULN and AST < 1.5 x ULN and bilirubin < 1 mg/dl	Ltx-free survival, HCC ascites, variceal bleeding, encephalopathy,	J Hepatol 2011	
Rotterdam <i>Kuiper</i>	Normalization of bilirubin and albumin	Ltx-free survival	Gastroenterology 2009	
Toronto <i>Kumagi</i>	ALP < 1.67 X ULN	Histology	Am J Gastroenterol 2010	
Toronto <i>Kumagi</i>	ALP < 1.67 x ULN and normal biirubin	Ltx-free survival	Hepatology 2010	
Mayo Mohma	ALP < 1.67 x ULN and biirubin < 1 mg/dl	Ltx-free survival	Liv International 2010	

Why chase the search of a surrogate endpoint in PBC?

- Time: a new intervention is quicker available on the market
- Care: the benefit/damage of an intervention is observed quicker
- Benefit for design of a new trial
 - Influence on sample-size calculation
 - Shorten duration of study
 - Influence of recruitment and participation enthusiasm
 - Reduced costs
- Benefit on long-term individual use:
 - Prediction models
 - Stopping rules


What Makes a Good Surrogate Endpoint?

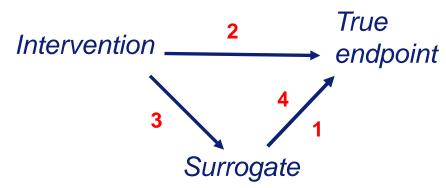
- Easy to measure
- Preferably non-invasive
- Progression of the surrogate endpoint precedes clinical symptoms
- Assessed within a short timeframe
- Epidemiology/clincal studies demonstrates that surrogate endpoints is linked to clinical outcomes
- Clinical trials demonstrate that treatment effects on the surrogate endpoint correspond to effects on the clinical outcome

Boissel JP et al. Eur J Clin Pharm 1992;43:235-44 Espeland MA et al. Current controlled trials in Cardiovascular Med 2005;6:3-6

Erasmus MC

"A correlate does not a surrogate make"

Flemming Ann Intern Med. 1996


Reasons for failure of surrogate endpoints:

- A. The surrogate is not in causal pathway of the disease
- B. Of several causal pathways of disease the intervantion only affects the pathway mediated through the surrogate
- C. The surrogate is not in the pathway of the intervention's effect
- D. The intervention has meachanisms of action independent of the disease process
 - adverse drug reaction

How do you prove surrogacy?

Prove association between

- 1. Surrogate and True endpoint
- 2. Intervention and True endpoint
- 3. Intervention and surrogate endpoint

and

- 4. <u>Prove</u> Intervention is no longer significant if also Surrogate endpoint included for analysis of True endpoint
- Use meta-analysis of both endpoints in clinical trial settings of multiple related drugs
- Need in-depth understanding of disease process and mechanism of action of the intervention
- Approval EMEA and FDA

Erasmus MC

Prentice, Stat in Med; 1989

4-level hierarchy for endpoints

Level 1

a true clinical efficacy measure

Level 2 a validated surrogate

Level 3

a non-validated surrogate, yet one established to be "reasonably likely to predict clinical benefit"

Level 4

a correlate that is a measure of biological activity, but not yet established to be at a higher level *likely appropriate primary endpoints in definitive or registration clinical trials*

Erasmus MC

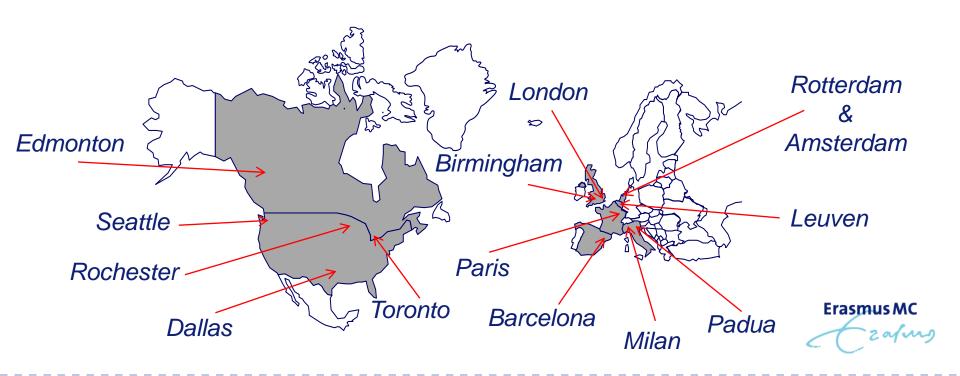
might be considered as primary endpoints in clinical trials

Fleming TR. Surrogate endpoints and FDA's accelerated approval process. Health Affairs. 2005;24:67–78 [....] Fleming TR, Powers, JH. Biomarkers and Surrogate Endpoints In Clinical Trials Stat Med 2012;31:2973-84

Philosophy

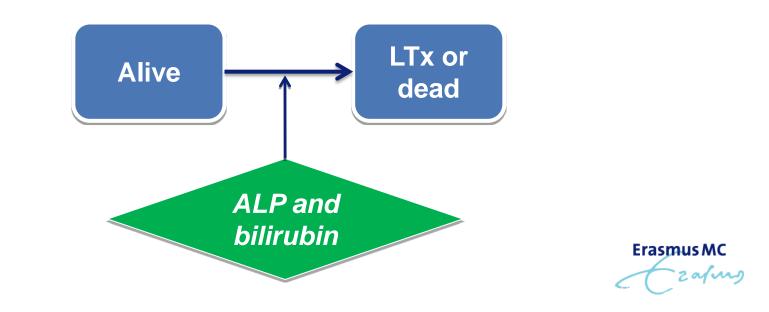
Joined forces

Joined forces


First "meeting" in 2011 in Berlin at EASL

Proposal: Meta-analysis of individual patient data

Long-term follow-up cohorts from 15 North American & European liver centres


Clinical data of PBC patients: treated and untreated

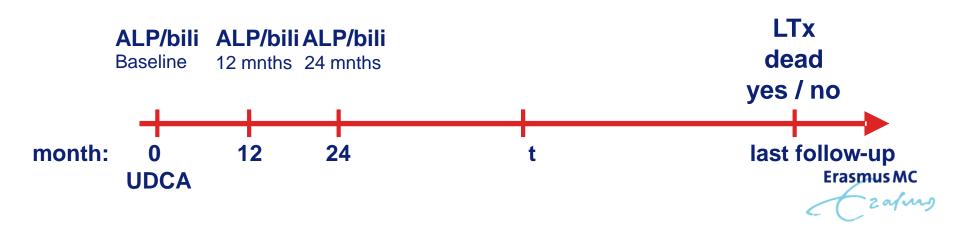
Determine the prognostic significance of ALP and bilirubin, as appropriate surrogate endpoints, in relation to transplant-free survival

Invitation to participate

Face-to-face meeting during every AASLD and EASL

Correspondence

- Protocol
- Consortium Agreement
- Case Record Form electronic and paper
- Letter of expected inclusion
- Site Visits (1-3 weeks visits)
 - Update, help
 - Construction of a total database
 - Collection of data for specific projects



Data collection: individual patient data

True endpoints Liver transplantation (LTx) Death

Surrogate endpoints at baseline, **1 year** and 2 year of follow up: ALP, grid of cut off points (1.0, 1.1, ..., **1.67**, ..., 3.0 xULN) Total bilirubin

CRF

SUMMARY CASE RECORD FORM									
Study ID	Date of first visit (baseline)//								
Baseline patient information									
	General	PBC related information							
		Date of PBC							
Date of birth	//	diagnosis//							
Gender	male / female	AMA positive Yes / No							
Nationality		Diagnostic liver biopsy* Yes / No / /							
Ethnicity	caucausian / african american /	if yes: stage** I / II / III / IV							
	asian / other:	Mayo Risk Score							
Weight	(kg)	Child-Pugh Score*** points							
Alcohol	Yes / No (units/day)	A-I overlap syndrome Yes / No							
Smoking	Previous / Current / No	Other major diseases (affecting 5yr life expectancy)							
UDCA therapy	Yes / No (mg/kg)	– Co evicting lives diseases (cleckelia, heretitis P. et C)							
Dose (mg/kg)	(mg/kg)	Co-existing liver diseases (alcoholic, hepatitis B or C)							
Start date therapy	//								
PBC	related information	* Within one year of inclusion date or earlier biopsy showing cirrhosis							
	iagnosis fatigue / pruritus /	** According to Ludwig classification							
lab (for) / other		/ loos ang la Laamg sidoon ballon							
	, * * * *	*** If cirrhosis is present							
	Foll	uw up period							
	First event of								
Ascites	; / / No Unknown								
	/ / No Unknown								
Encephalopathy									
	/ / No Unknown								
	/ / No Unknown								
SBP	// No Unknown								
Use of medication (≥ 6 months)									
Prednisone	Yes / No/_/	to//							
Azathioprine	Yes / No//								
Budesonide	Yes / No//	to/_/							
Methotrexate	Yes / No _/_/	to / /							
Bezofibrates	Yes / No//	to / /							
		······································							

						- X I.	PD	
		SUMMARY	CASE RECO	ORD FORM		\(U	STUDY GR	
							· STUDY GRE	
							STODIO	
Months from	Units	Normal						
baseline	Used	range	0	6	12	24	36	
baoonno	0000	lango	_/_/	_/_/	_/_/	//	//	
Date								
Bilirubin								
Albumin								
ALP AST								
AST								
GGT								
Cholesterol								
IgM								
IgG								
Trombocytes								
Platelets								
PT								
Change UDCA								
dose or start								
	//		_/_/	_/_/	_/_/	_/_/	//	
other PBC therapy		_/_/						
Months from baseline	40	60	72	0.4	00	100	100	
Months from baseline	48	60	_/_/	84 //	96	108	120	
		//						
Bilirubin								
Albumin								
ALP								
AST								
ALT								
GGT								
Cholesterol								
IgM								
IgG								
Trombocytes								
Platelets PT								
Change UDCA								
dose or start								
	//		1 1	//	1 1	//	1 1	
other PBC therapy		_/_/						
		En	d of Follow	Up			C	
to alier								

Ecolony

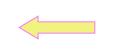
Steering Committee Who

Rotterdam: BE Hansen & HR van Buuren Birmingham: GM Hirschfield Rochester: KD Lindor Barcelona: A Parés Paris: C Corpechot

Toronto: HLA Janssen

Steering Committee Tasks

Investigator


proposal of new study question submit a (summary) protocol to the Steering Committee

Steering Committee

Steering Committee must approve

approval is valid for 3 months

investigator first author of manuscript

approval of author list approval of scientific content

Philosophy

To qualify for authorship: Contributions should be in at least three areas:

- Conception and design
- Entering a sufficient number of evaluable patients
- Generating laboratory data from patient materials
- Analysis and interpretation of data
- Drafting the article or revising it critically for important intellectual content
- Final approval of the version to be published

Publication rules

General papers:

papers on full series of patients, addressing major goals of the study

Local papers:

papers initiated by any member of the GLOBAL PBC STUDY GROUP with focus on a specific question on a defined subset of samples

Erasmus MO

Publication rules Authorship rules for <u>general papers</u>:

- 2 to 5 authors who did the work
- One representative per clinical center in order of decreasing number of patients
- One representative of the coordination center
- 1 to 5 senior authors: i.e. partners who led the work, participated in design and organization, and in the writing of the article
- Followed by

'for the GLOBAL PBC STUDY GROUP'

Erasmus MO

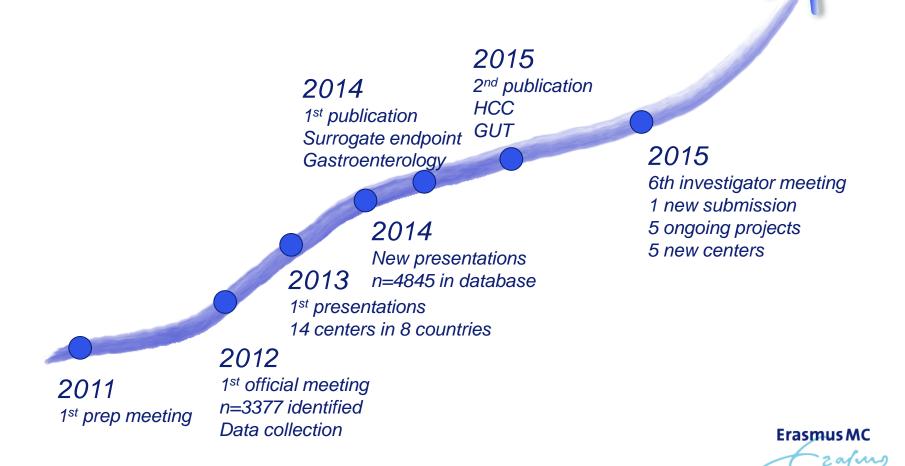
Publication rules Authorship rules for <u>local papers</u>:

- The authors <u>who did the work</u>
 In the clinical center that specifically recruited patients for this paper
- Followed by
 'for the GLOBAL PBC STUDY GROUP'
- No 'clinical list' and no authors who are not directly related to the work must appear

Erasmus MO

Data Ownership = ALL

Data stored in Rotterdam



If research question:

Data can be requested (after approval by Steering Committee) - visit to Rotterdam to run analysis

Continuous growth

AASLD 2013, Washington

PR and Communication

The Global PBC in the Yalung Ri (5630 m; Nepal)

Investigator Meetings: 2x yearly Scientific Output: Presentations at EASL, AASLD, mono-thematic conferences, local Manuscripts Email/Skype/TC contact: short lines Logo Grant applications Newsletters Website: under construction **Risk Score Calculator:** submitted

Erasmus MC

Challenges

Financial support

Unrestricted grants from pharmaceutical industry

Application for official grants (EASL, ...)

Inclusion of new centers

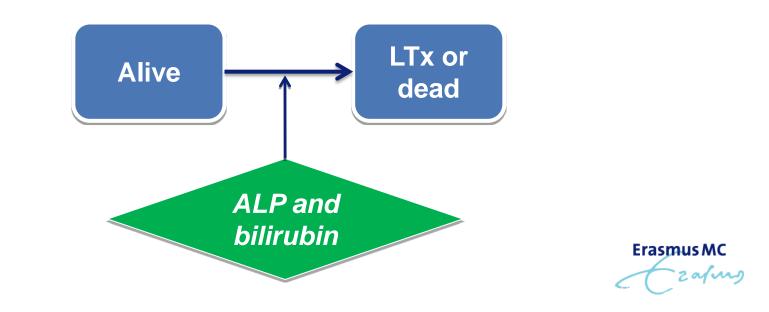
Ensuring high quality of data

Global PBC projects

- Surrogate markers
- HCC
- Risk calculator
- Age and gender effects
- Decompensation
- Young Age
- Liver transplantation
- Dynamic prediction model

published published submitted manuscript in preparation data collection running data collection running analysis ongoing

.



.....

Determine the prognostic significance of ALP and bilirubin, as appropriate surrogate endpoints, in relation to transplant-free survival

Potential surrogate markers in PBC

→ do changes reliably predict long-term outcome?

- liver histology
- liver imaging
- Fibroscan / Fibrotest e.s.o.
- Mayo / MELD score
- Iaboratory tests

Erasmus MC

Liver biochemical tests as surrogate endpoints

bilirubin, alkaline phosphatase, gamma-gt, ASAT, ALAT, albumin, PT/INR

- cheap
- non-invasive
- uniformly available
- changes observed within short time-frame

Erasmus MC

Serum bilirubin: a prognostic factor in primary biliary cirrhosis Shapiro JM, Smith H, Schaffner F. Gut, 1979,20,137-140

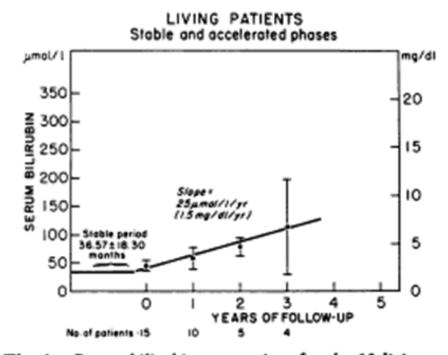
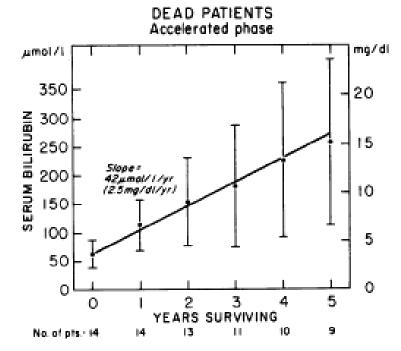
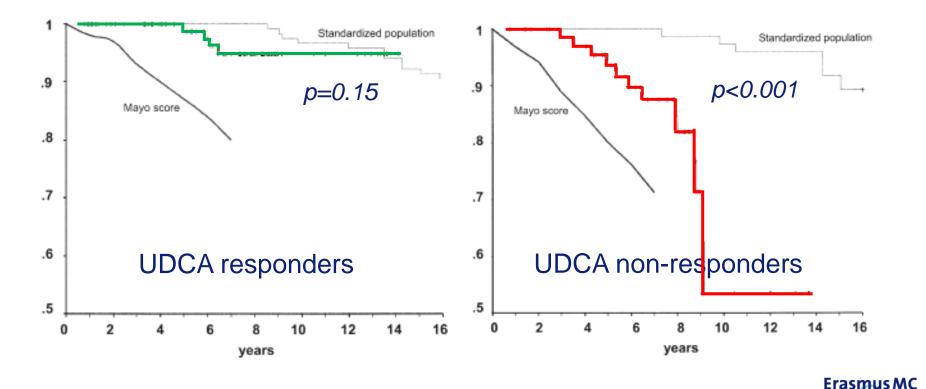


Fig. 1 Serum bilirubin versus time for the 15 living patients who have had two consecutive serum bilirubin values greater than 34 μ mol/l (2·0 mg/dl). The initial horizontal line shows the stable period before this change in serum bilirubin (averaging three years). The diagonal line denotes the linear rate of rise over time after the change in serum bilirubin. Results for each value are expressed \pm SEM.




Fig. 2 Serum bilirubin versus time in the 14 patients followed up until death. The line shows the approximate linear rate of rise of serum bilirubin after two consecutive previous values were both greater than 34 μ mol/l (2·0 mg/dl). Please note the slope difference between Fig. 1 and 2. Results for each value are expressed \pm SEM.

Erasmus MC zafino

Biochemical response and prognosis

Pares definition for response:

ALP decrease > 40% or normalization of ALP at 1 year

zalus

Pares et al. Gastroenterology 2006;130:715-720

<u>Bilirubin</u>

Numerous studies showing prognostic significance of bilirubin

Bilirubin component of established prognostic models:

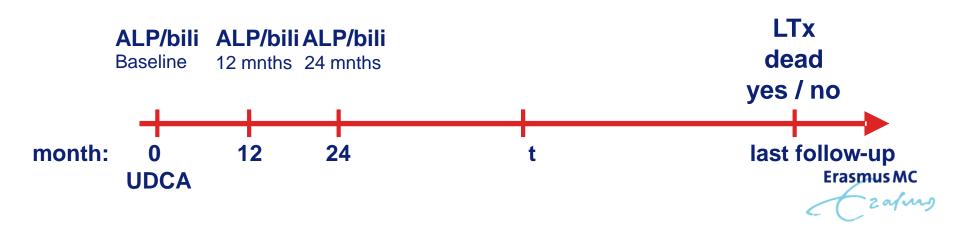
- Mayo model
- MELD score
- -Child-Pugh score

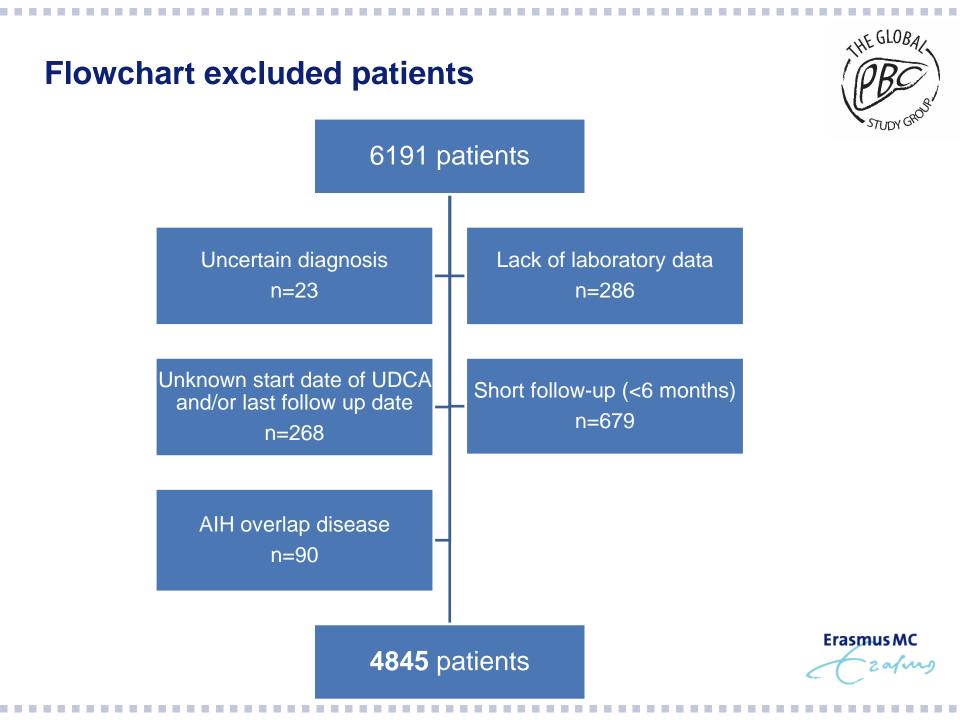
Alkaline phosphatase

Key diagnostic variable

Mutiple studies indicating prognostic significance

Useful as surrogate endpoint?




Methods

True endpoints Liver transplantation (LTx) Death

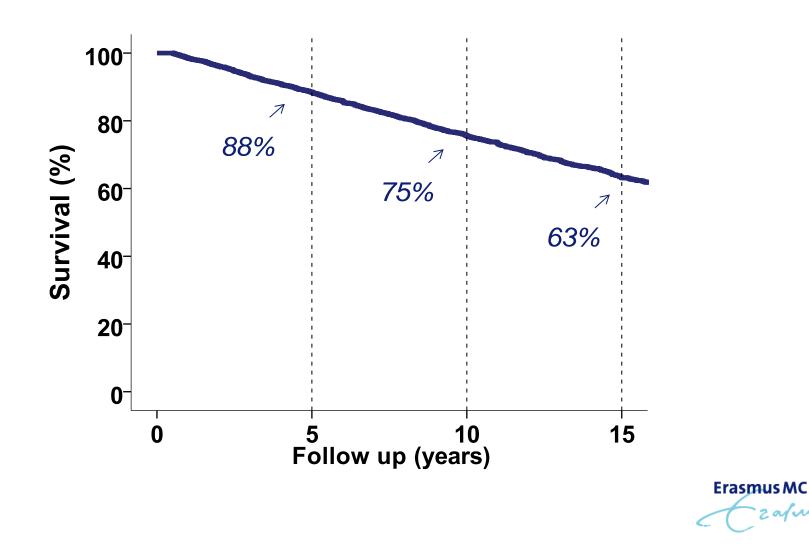
Surrogate endpoints at baseline, **1 year** and 2 year of follow up: ALP, grid of cut off points (1.0, 1.1, ..., **1.67**, ..., 3.0 xULN) Total bilirubin

Clinical characteristics

	Total group N=4845*	UDCA N=4119*	Non UDCA N=640*
Age (yr) Mean (sd)	53 (12)	52 (12)	56 (13)
Female n (%)	4348 (89.7%)	3706 (90.0%)	568 (88.8%)
Calendar time (yr) <i>Median (IQR)</i>	1998 1991 – 2004	1998 1991 – 2003	1999 <i>1989 – 2005</i>
Follow up (yr) Median (IQR)	7.3 (3.6 – 11.5)	7.7 (3.9 – 12.0)	5.3 (2.2 – 8.4)

*of 83 patients it is unknown whether they were using UDCA or not

Clinical endpoints



	Total group N=4845	UDCA N=4119	Non UDCA N=640
Alive	3727 (76.9%)	3233 (78.5%)	441 (68.9%)
Death or liver transplantation	1118 (23.1%)	886 (21.5%)	199 (31.1%)
Death, all causes -liver related	729 (15.0%) 358 (7.4%)	566 (13.7%) 269 (6.5%)	139 (21.7%) 74 (11.6%)
Liver transplantation	389 (8.0%)	320 (7.8%)	60 (9.4%)

Transplantation-free survival

zafing

THE GLOBA, ALP values after 1 year of follow-up predict outcome 100 ALP≤1.67xULN 80-297/1991 ALP>1.67xULN Survival (%) p=2.0*10⁻²⁴ **60**⁻ 395/1258 **40**⁻ Hazard Ratio* 20-ALP >1.67 vs ≤1.67 = **2.2 (1.9-2.5)** 0-15 5 10 0

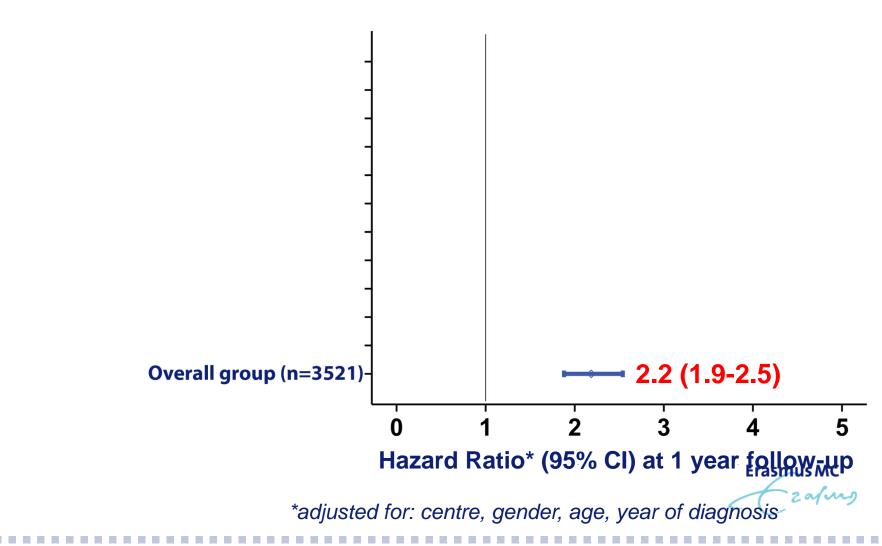
Follow up (years)

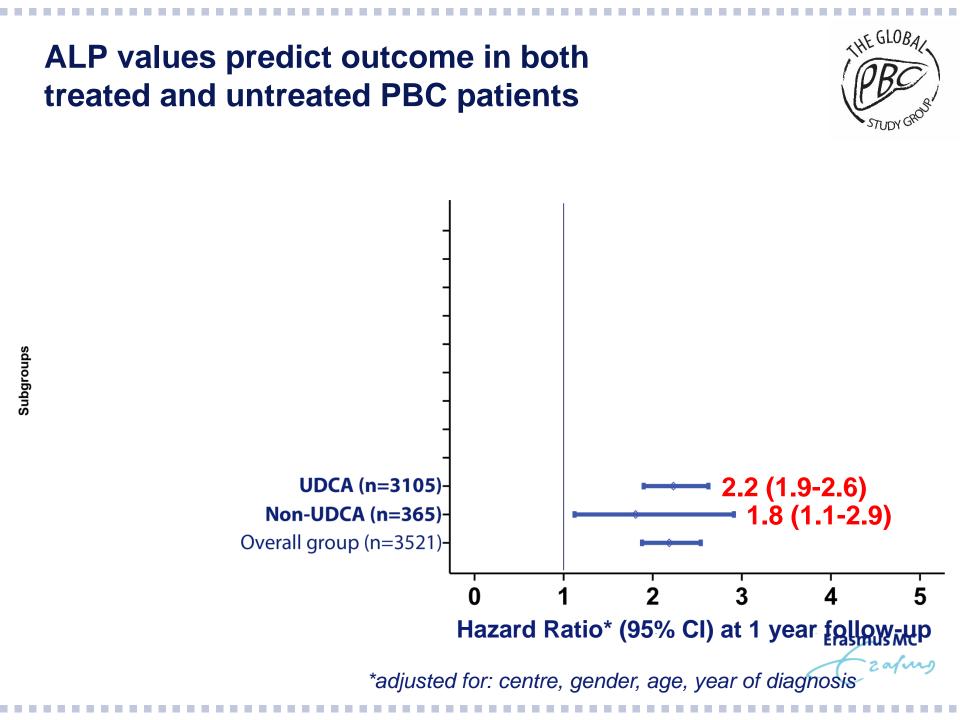
Erasmus MC

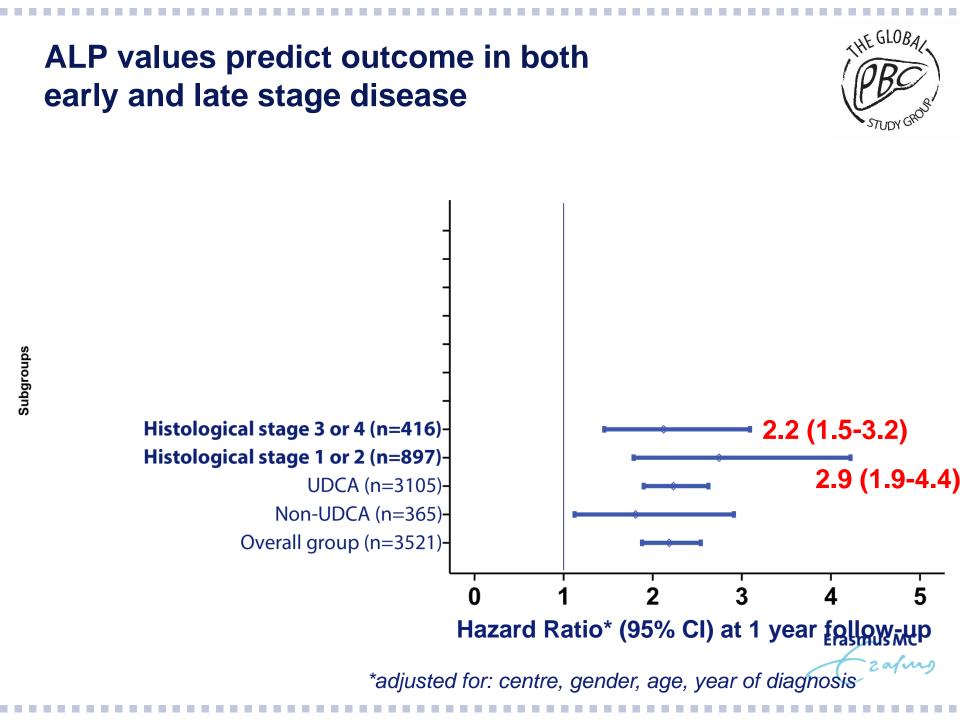
zafuns

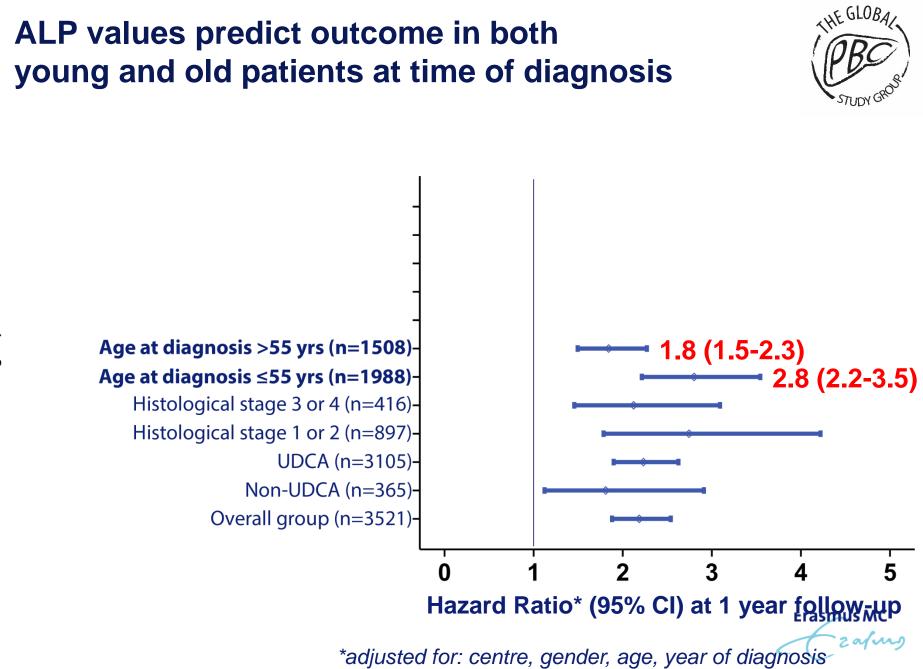
*adjusted for: centre, gender, age, year of diagnosis

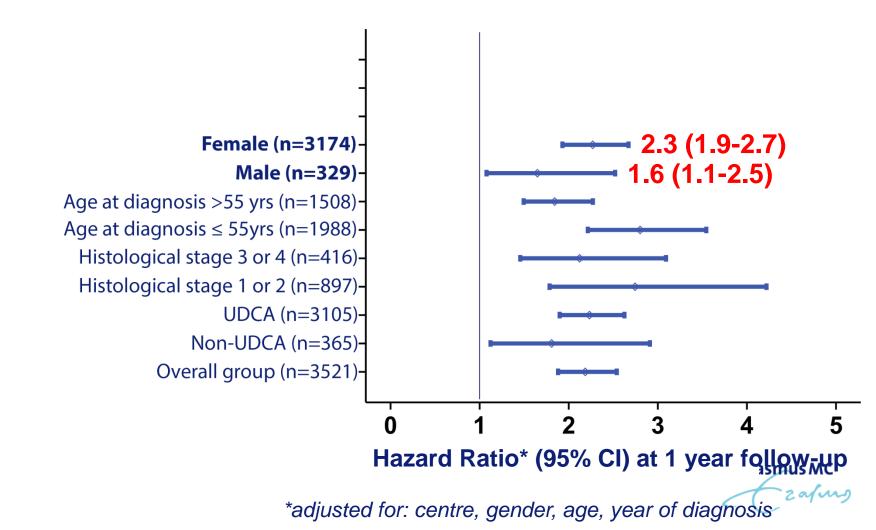
Subpopulations

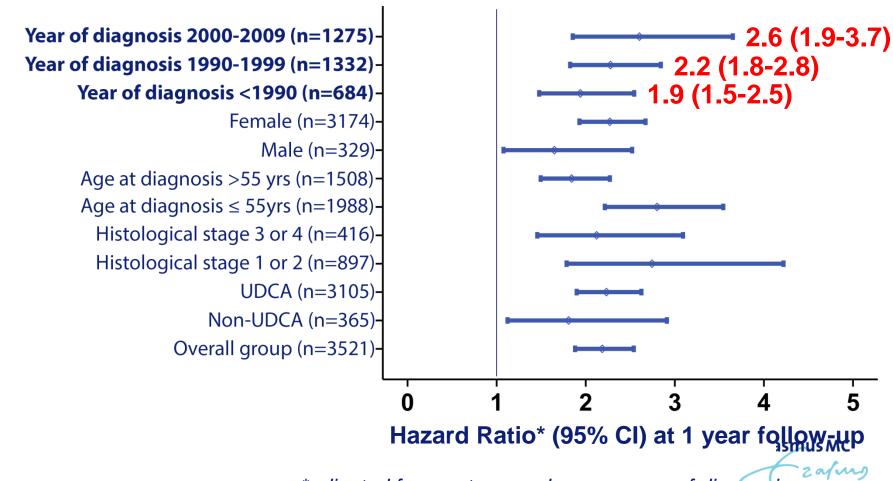



- If ALP<1.67 and normal bilirubin is a surrogate endpoint it should work
 - for any subpopulation
 - at different follow-up times : t=0, 1yr, 2yr, ..., 5yr
- Study Populations:
 - All, UDCA treated, no UDCA
 - Female/male
 - Age groups: <55 yr, <60 yr, <65 yr</p>
 - Diagnose years: <1990, 1990-1999, >2000
 - Disease state: by bilirubin/alb, by biopsy

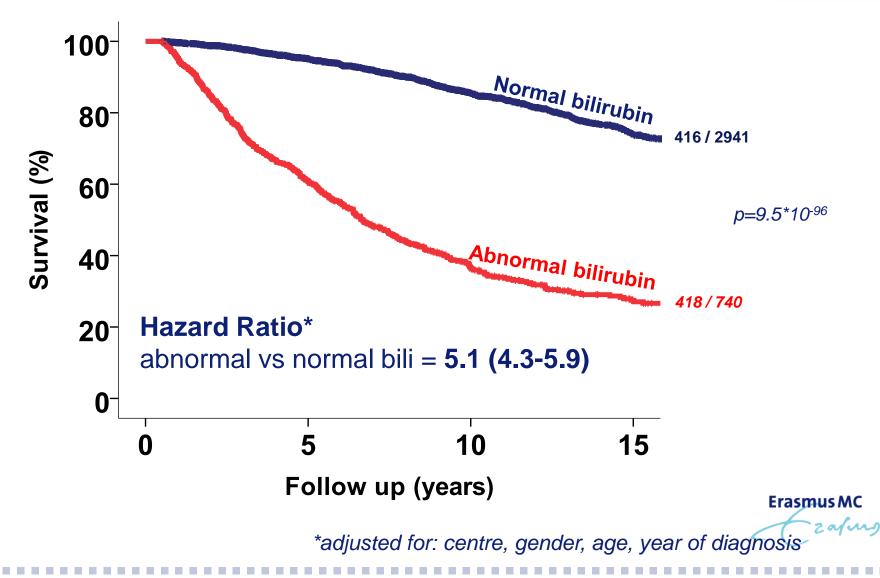



The effect of ALP>1.67xULN versus ALP≤1.67xULN in different subgroups

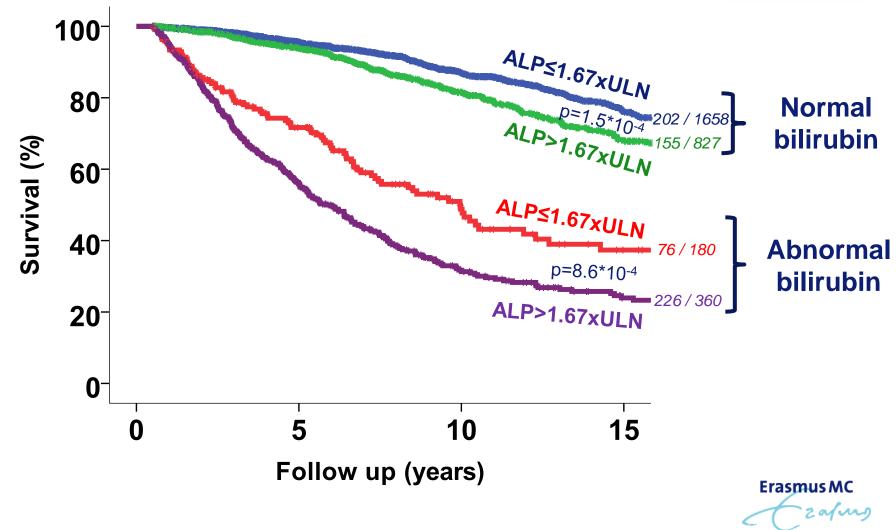



ALP values predict outcome in both males and females

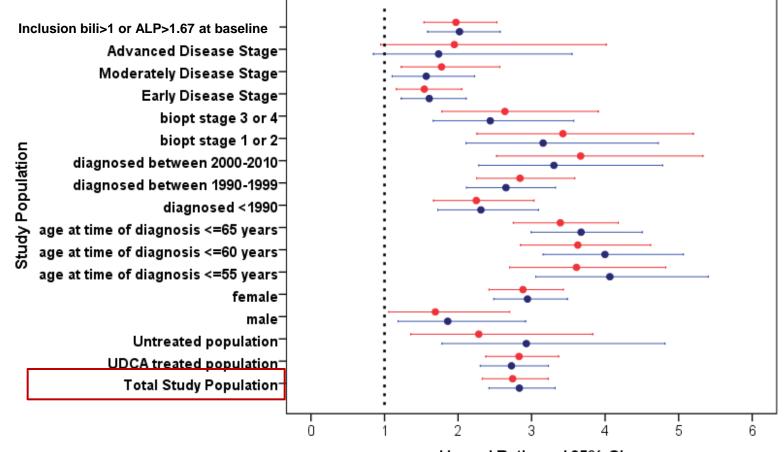
ALP values predict outcome regardless of year of diagnosis



*adjusted for: centre, gender, age, year of diagnosis


Abnormal bilirubin values are associated with worse transplant-free survival

ALP values have predictive significance in addition to bilirubin values



Lammers et al., Gastroenterology 2014

Hazard Ratio ALP>1.67 or bilirubin>1 versus ALP<1.67 and bilirubin normal at 1 year follow-up

Hazard Ratio and 95% CI

- Crude HR, stratified on centre
- HR adjusted by age, sex, diagnose year stratified on centre

Easy to measure Preferably non-invasive Progression of the surrogate endpoint precedes clinical symptoms Assessed within a short timeframe *Epidemiology/clincal studies demonstrates* Clinical trials demonstrate that treatment effects on the surrogate endpoint correspond to effects on the clinical outcome

What Makes a Good Surrogate endpoint? & alkaline phosp

that surrogate endpoints is linked to clinical outcomes

Bilirubin

Erasmus M

+/-

Summary

- Alkaline phosphatase (ALP) and bilirubin values are correlated with transplant-free survival
- The combination of ALP and bilirubin is a stronger predictor of outcome than ALP or bilirubin alone
- The combination of ALP and bilirubin is a strong predictor
 - overall
 - in multiple subgroups
 - at multiple time points
 - throughout followup

thus independent of subgroup and time, UDCA treated or untreated patients

Conclusion

Surrogate Endpoints in PBC Trials: Are we there yet?

- Currently no validated surrogate endpoint (*level 2 evidence*) for true clinical endpoints in PBC (*unless we reconsider method to prove*)
- Biochemical variables alkaline phosphatase and bilirubin seem reasonably likely to predict clinical risk in both UDCA treated and untreated patients (level 3 evidence)
- Further validation of surrogate endpoints in other cohorts, in particular in patients treated with other drugs than UDCA, is necessary Erasmus MC