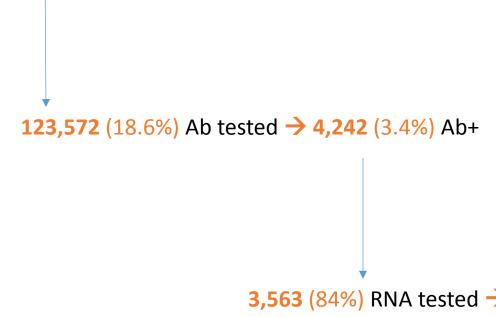

Increasing Hepatitis C Virus (HCV) Screening and Confirmatory Testing in the Birth Cohort in a Large Integrated Health System

Carla V. Rodriguez PhD, MPH¹, Kevin B. Rubenstein MS¹, Haihong Hu MS¹, Benjamin Linas MD, MPH^{2,3}, Michael Horberg MD, MAS¹ ¹ Kaiser Permanente, Mid-Atlantic Permanente Research Institute, Rockville, MD; ² HIV Epidemiology and Outcomes Research Unit, Section of Infectious Diseases, Boston Medical Center; ³Department of Epidemiology, Boston University School of Public Health, Boston, MA

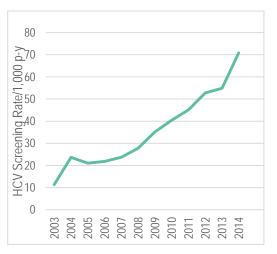


Objective: Describe trends in screening and confirmatory testing in Kaiser Permanente Mid-Atlantic States (KPMAS) relative to the 2013 release of the U.S. Preventative Services Task Force "birth cohort" (born 1945-1965) screening recommendations. A prior study described screening prevalence of 15.8% from 2003-2012.

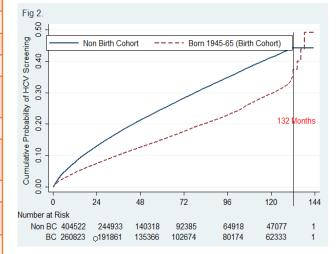
Methods:

- Cohort study, patients ≥ 18 yrs with ≥8 months of enrollment from 1/1/2003-12/31/2014 and ≥1 clinical visit.
- Annual screening rate estimated as the number antibody (Ab) tested per persons enrolled each year.
- Survival methods used to describe factors associated with time to Ab testing.
- Stratification by Service Area, interactions with time and robust standard errors to address nonproportional hazards.
- Among Ab+, we describe the cumulative probability and predictors of confirmatory RNA or genotype testing.

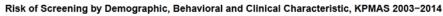
665,345 enrolled 1/1/2003- 12/31/2014

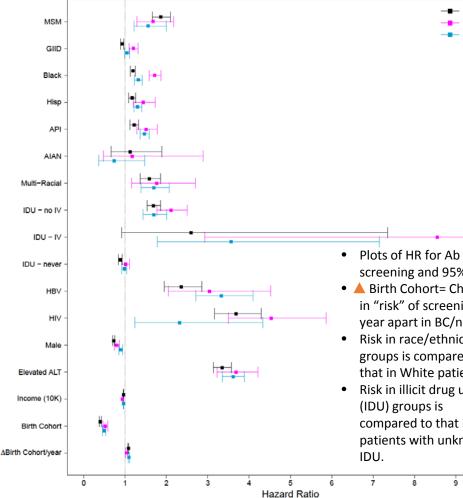

3,563 (84%) RNA tested → **3,559** (99.9%) RNA/Genotype +

Total KPMAS Pop	Not Birth Cohort	Birth Cohort
665,345		
Age at Enrollment,	404,522	260,823
• ·	37.5 (17.1)	49.5 (6.53)
mean (sd)		
Median Household	82559.59	86366.32
Income ¹ , mean (sd) Race ²	(36599.65)	(38527.86)
	25.20/	26.40/
Black,%	35.3%	36.4%
American		
Indian/Alaskan Native	0.29/	0.20/
Asian/Pacific	0.2%	0.2%
Asian/Pacific Islander	9.8%	9.5%
Hispanic	12.0%	10.9%
Multi-Racial	1.8%	1.8%
White	40.8%	41.2%
Sex, % (n)	40.876	41.270
Female		
	. ,	55.0% (143450)
Male		45.0% (117373)
HBV+, % (n)	0.5%(2080)	0.6% (1521)
HIV+, % (n)	0.5% (2051)	0.8% (2032)
Seen by Gl/lD (ever), % (n)	11.2% (45400)	16.1% (41920)
MSM, % (n)	1.6% (1101)	1.6% (720)
Illicit Drug Use	1.070 (1101)	1.078 (720)
(ever), % (n)	<0.1%(28)	<0.1%(50)
Elevated ALT ³ , % (n)	2.4%(9548)	4.5% (11790)
1 Derived from 2013 US Cen	. ,	
Community Survey.		a, 2010 / incritan


3 Alkaline Amino Transferase; elevated = 2 consecutive measures >60 IU/L

Services Research, 43(5 Pt. 1), 1722-1736.)


2. Screening rates increased over time.



3. By 120 months, 66% of the non-birth cohort population was left unscreened; compared to **74%** of the birth cohort.

4. Although patients in the birth cohort had a lower screening rate, their risk of screening increased faster over time compared to those in the non-birth cohort. Other important predictors of screening included female sex, MSM, Black, Hispanic and Asian Race, IDU, HBV and HIV co-infection, and elevated ALT.

t S esu M

KAISER PERMANENTE

screening and 95% CI. • **A** Birth Cohort= Change in "risk" of screening 1 year apart in BC/non-BC. • Risk in race/ethnicity groups is compared to that in White patients. • Risk in illicit drug use compared to that in patients with unknown

5. Among Ab+, 84% received confirmatory testing.

• No significant differences by service area, race (except Asian/PI 50% more likely to be tested), history of drug use, MSM or HBV/HIV status. **Elevated ALT** (aHR=1.13; 95% CI: 1.02, 1.25) was positively

associated with confirmatory

testing.

A total of 2.9% of the screened population had confirmed HCV

Conclusion:

- •High screening prevalence, yet >16% of Ab+ were not confirmed.
- •Higher screening rate in non-birth cohort underscores continued focus on risk-based screening.
- Increased screening rate over time in birth-cohort suggests shift.
- •More time is needed to confirm this trend, which is part of overall strategy aided by the advent of new DAAs and increased screening outreach.

