Will detection of pre-existing (baseline) NS5A RAVs with high-fold *in vitro* resistance be another predictor in treatment decision?

Johan Lennerstrand, Associate professor Uppsala University, Sweden

Treatment emergent NS5A RAVs in different genotypes

HEPATOLOGY, Vol. 00, No. 00, 2015

LONTOK ET AL.

NS5A Domain 1 (213 aa)

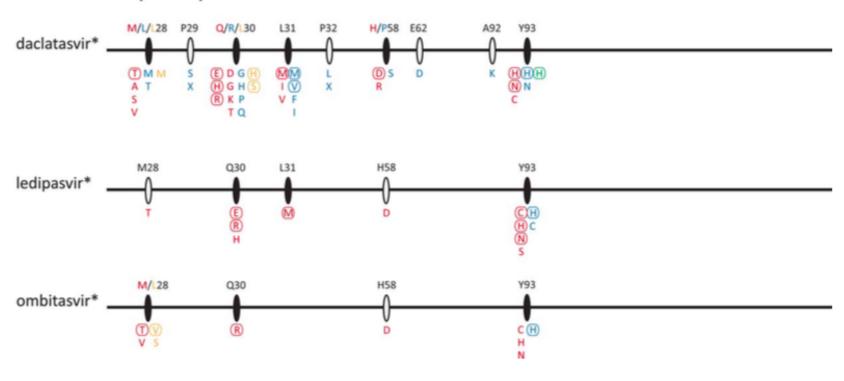


Fig. 3. NS5A resistance-associated substitutions observed with treatment. *Compounds approved for clinical use. Amino acid deletions are designated with an X. Substitutions are color-coded based on genotype and subtype: 1a, red; 1b, blue; 2, brown; 3a, green; 4, orange (daclatasvir 4, ombitasvir 4d). See Fig. 1 legend.

(Lontok et al. Hepatology, 2015; Sarrazin. Journal of Hepatology 2015)

- in vitro fold-resistance with different GTs
- prevalence at baseline with population sequencing (cut-off 20%)

RAV	Approx. Prevalence at	Fold-Change in Resistance Compared to Wild-Type Replicon*				
	baseline m, n, o, p	Daclatasvir (DCV)	Ombitasvir (OMV)	Ledipasvir (LDV)		
M28T	1.2 % (GT 1a)	683 (GT 1a) ^a	8965 (GT1a) ^b	61 (GT 1a) ^c		
M28V	3.5 % (GT 1a)	1.3 (GT 1a) ⁱ	58 (GT 1a) ^c	NDA		
Q30E		7500 (GT 1a) ^a	NDA	5458 (GT 1a) ^c		
Q30H	0.6 % (GT 1a)	1450 (GT 1a) ^a	3 (GT 1a) ^j	183 (GT 1a) ^c		
Q30R		1217 (GT 1a) ^a and 1 (GT 1b) ^a	800 (GT1a) ^b	632 (GT 1a) ^c		
A30K	5 % (GT 3a)	20-100 (GT 3a)	NDA	NDA		
L31M	1.4 % GT 1a), 4 % (GT 1b)	350 (GT 1a) ^a and 3 (GT 1b) ⁱ	2 (GT 1a) ^k and 0.9 (GT 1b) ^k	554 (GT 1a) c and 2,5- 10 (GT 1b) d		
L31V		3350 (GT 1a) and 23 (GT 1b) ^a	8 (GT 1b) ^f	100-1000 (GT 1a) ^d		
H58D	< 1% (GT 1a)	483 (GT 1a) ^e	243 (GT1a) ^b	>1127 (GT 1a) ^c		
Y93C	0.6 % (GT 1a)	1850 (GT 1a) and 3.5 (GT 1b)e	1675 (GT1a) ^b	>1602 (GT 1a) ^c		
Y93H	1 % (GT 1a) 9 % (GT 1b) 8 % (GT 3a)	5367 (GT 1a) ^g , 19 (GT 1b) ^a and 2154 (GT3a) ^h	41383 (GT1a), and 77 (GT1b) ^b	3309 (GT 1a) ¹ and 1319 (GT 1b) ¹		
Y93N	1 % (GT 1a) 0.7 % (GT 1b)	47017 (GT 1a) and 28 (GT1b) ^a	66740 (GT1a) ^b	>14706 (GT 1a) ^c		

^{*}HCV replicon phenotype results between different drugs should be interpreted with caution as data were generated by different assay conditions

(Lontok et al. Hepatology, 2015; Sarrazin. Journal of Hepatology 2015)

- *in vitro* fold-resistance with different GTs
- prevalence at baseline with population sequencing (cut-off 20%)

RAV	Approx. Prevalence at	Fold-Change in Resistance Compared to Wild-Type Replica				
	baseline m, n, o, p	Daclatasvir (DCV)	Ombitasvir (OMV)	Ledipasvir (LDV)		
M28T	1.2 % (GT 1a)	683 (GT 1a) ^a	8965 (GT1a)b	61 (GT 1a) ^c		
M28V	3.5 % (GT 1a)	1.3 (GT 1a) ⁱ	58 (GT 1a) ^c	NDA		
Q30E		7500 (GT 1a) ^a	NDA	5458 (GT 1a) ^c		
Q30H	0.6 % (GT 1a)	1450 (GT 1a) ^a	3 (GT 1a) ^j	183 (GT 1a) ^c		
Q30R		1217 (GT 1a) ^a and 1 (GT 1b) ^a	800 (GT1a)b	632 (GT 1a) ^c		
A30K	5 % (GT 3a)	20-100 (GT 3a)	NDA	NDA		
L31M	1.4 % GT 1a), 4 % (GT 1b)	350 (GT 1a) ^a and 3 (GT 1b) ⁱ	2 (GT 1a) ^k and 0.9 (GT 1b) ^k	554 (GT 1a) c and 2,5- 10 (GT 1b) d		
L31V		3350 (GT 1a) and 23 (GT 1b) ^a	8 (GT 1b) ^f	100-1000 (GT 1a) d		
H58D	< 1% (GT 1a)	483 (GT 1a)e	243 (GT1a) ^b	>1127 (GT 1a) ^c		
Y93C	0.6 % (GT 1a)	1850 (GT 1a) and 3.5 (GT 1b)e	1675 (GT1a) ^b	>1602 (GT 1a) ^c		
Ү93Н	1 % (GT 1a) 9 % (GT 1b) 8 % (GT 3a)	5367 (GT 1a) ^g , 19 (GT 1b) ^a and 2154 (GT3a) ^h	41383 (GT1a), and 77 (GT1b) ^b	3309 (GT 1a) 1 and 1319 (GT 1b) 1		
Y93N	1 % (GT 1a) 0.7 % (GT 1b)	47017 (GT 1a) and 28 (GT1b) ^a	66740 (GT1a) ^b	>14706 (GT 1a) ^c		

^{*}HCV replicon phenotype results between different drugs should be interpreted with caution as data were generated by different assay conditions

(Lontok et al. Hepatology, 2015; Sarrazin. Journal of Hepatology 2015)

- *in vitro* fold-resistance with different GTs
- prevalence at baseline with population sequencing (cut-off 20%)

RAV	Approx. Prevalence at	Fold-Change in Resistance Compared to Wild-Type Replicon*				
baseline ^{m, n, o, p}		Daclatasvir (DCV)	Ombitasvir (OMV)	Ledipasvir (LDV)		
M28T	1.2 % (GT 1a)	683 (GT 1a) ^a	8965 (GT1a) ^b	61 (GT 1a) ^c		
M28V	3.5 % (GT 1a)	1.3 (GT 1a) ⁱ	58 (GT 1a) ^c	NDA		
Q30E		7500 (GT 1a) ^a	NDA	5458 (GT 1a) ^c		
Q30H	0.6 % (GT 1a)	1450 (GT 1a) ^a	3 (GT 1a) ^j	183 (GT 1a) ^c		
Q30R		1217 (GT 1a) ^a and 1 (GT 1b) ^a	800 (GT1a) ^b	632 (GT 1a) ^c		
A30K	5 % (GT 3a)	20-100 (GT 3a)	NDA	NDA		
L31M	1.4 % GT 1a), 4 % (GT 1b)	350 (GT 1a) ^a and 3 (GT 1b) ⁱ	2 (GT 1a) ^k and 0.9 (GT 1b) ^k	554 (GT 1a) c and 2,5- 10 (GT 1b) d		
L31V		3350 (GT 1a) and 23 (GT 1b) ^a	8 (GT 1b) ^f	100-1000 (GT 1a) ^d		
H58D	< 1% (GT 1a)	483 (GT 1a) ^e	243 (GT1a) ^b	>1127 (GT 1a) ^c		
Y93C	0.6 % (GT 1a)	1850 (GT 1a) and 3.5 (GT 1b)e	1675 (GT1a) ^b	>1602 (GT 1a) ^c		
Ү93Н	1 % (GT 1a) 9 % (GT 1b) 8 % (GT 3a)	5367 (GT 1a)g, 19 (GT 1b)a and 2154 (GT3a)h	41383 (GT1a), and 77 (GT1b) ^b	3309 (GT 1a) ¹ and 1319 (GT 1b) ¹		
Y93N	1 % (GT 1a) 0.7 % (GT 1b)	47017 (GT 1a) and 28 (GT1b) ^a	66740 (GT1a) ^b	>14706 (GT 1a) ^c		

^{*}HCV replicon phenotype results between different drugs should be interpreted with caution as data were generated by different assay conditions

Genotype 1a

Potential relevant baseline NS5A RAVs with > 100 fold in resistance**

RAV	Prevalence at baseline	In vitro Fold-Change in Resistance*			Notes
	(cut off 20 %)	DCV	OMV	LDV	Reduced SVR with RAVs at baseline
M28T	1.2 %	683	8965	61	
L31M	1.4 %	350	2	554	80 % SVR, Lawitz EASL 2015 Harvoni retreatment 24 w
Y93C	0.6 %	1850	1675	>1602	
Ү93Н	1 %	5367	41383	3309	33% SVR Lawitz EASL 2015 Harvoni retreatment 24 w.
Y93N	1 %	47017	66740	>14706	33 % SVR Lawitz EASL 2015 Harvoni retreatment 24 w. Also observed in AVIATOR study for two relapsers.

^{*}HCV replicon phenotype results between different drugs should be interpreted with caution as data were generated by different assay condition.

^{**}These RAVs seem also to effect Elbasvir.

Genotype 1b

Potential relevant baseline NS5A RAVs with > 100 fold in resistance

RAV	Prevalence at baseline	In vitro Fold-Change in Resistance*			Notes
	(cut off 20 %)	DCV	OMV	LDV	
Y93H	9 %	19	77	1319	

^{*}HCV replicon phenotype results between different drugs should be interpreted with caution as data were generated by different assay conditions

Broad cross-resistance with "early

generation" NS5As

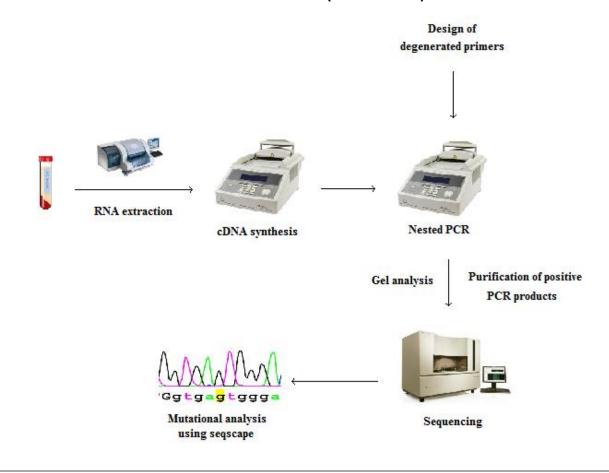
Wyles D, AASLD 2015

Fold-change		1a				1b
	M28T	Q30R	L31M/V	Y93H/N	L31V	Y93H/N
LDV	20x	>100x	>100x/ >100x	>1,000x/ >10,000		>100x/
Ombitasvir	>1000x	>100x	>100x	>10,000x/ >10,000x	<10x	20x/50x
DCV	>100x	>1000x	>100x/ >1000x	>1,000x/ >10,000x	<10x	20x/50x
Elbasvir	20x	>100x	>10x	>1,000x/	<10x	>100x/
Velpatasvir	<10x	<3x	>100x 20x/50x	>1,000x >100x/ >1000x		<3x/
ACH-3102	30x	20x	<10x	>100x/>100x	195	<3x/<3x
ABT-530	<3x	Зх	<3x	<10x/<10x	<3x	<3x/<3x
MK-8408	<10x	<10x	<10x	<10x	<10x	<10x

Wang C. AAC 2012. Cheng G. #1172. EASL 2012. Zhao Y. #A845 EASL 2012. Yang G. EASL 2013. Ng T. #639 CROI 2014. Asante-Appleh E. AASLD 2014.

Genotype 3a

Potential relevant baseline NS5A RAVs with > 100 fold in resistance


RAV	RAV Prevalence at In vitro Fold-Chan baseline			n Resistance	Notes	
	(cut off 20 %)	DCV	OMV	LDV	Reduced SVR with RAVs at baseline	
A30K	5 %	20 - 100	NDA	NDA	Lower SVR only observed with DCV + PEG-INF/RBV	
					ALLY 3+ study AASLD 2015	
					12 /16 w + RBV; 7 of 49 had	
					A30K at baseline ; no relapse	
Ү93Н	8 %	2154	NDA	NDA	33% SVR with DCV+SOF 12 w for patients with cirrhosis, and 67 % SVR for patients without cirrhosis. ALLY 3 study; Nelson e al Hepatology 2015; 13 0f 147 had Y93H at baseline. ALLY 3+ study AASLD 2015,	
					12 /16 w + RBV; only 2 of 49	
					had Y93H at baseline; one	
					relapsed.	

NS5A population based sequencing method at Clinical Microbiology Uppsala

Routine method since Dec 2014 (200 € per sample; Method published: Lindstrom et al Infectious Diseases 2015)

Second line treatment recommendation for NS5A RAVs (>100 fold) at treatment failure

Plus modest first line treatment recommendations for NS5A RAVs (>100 fold) at baseline

DAA Wyles D, failure **AASLD 2015** Genotypic resistance testing +NS5A RAVs No NS5A + NS5A RAVs + NS3 RAVs **RAVS** (Q30, L31, H58, Y93) (R155, A156, D168) SOF + SMV SOF/LDV + Desperation No Q80K + RBV RBV time (or other PI RAVs) 24 weeks 24 weeks 3D + SOF (LB-20) (even if Q80K) SOF + SMV + DCV + RBV SOF/LDV + RBV SOF + SMV For GT 3 failure: + RBV Longer duration, Investigational 24 weeks add RBV or Triple Regimens warehouse for better options

Nordic multicenter study 2015 - 2016

Aim:

To explore if baseline NS5A RAVs with high fold resistance may predict treatment outcome, together with other negative factors (such as high fibrosis stage, Treatment Exp, high viral load, IL28B non-CC etc)

To find more cost-efficient combination of DAA treatment, and reduce the treatment duration for an HCV infected individual

In collaboration with:

Hege Kileng and Tore Gutteberg, Tromsö, Norway

Anders Lannergård, Uppsala, Sweden

Lars Wesslèn, Gävle, Sweden

Ann-Sofi Duberg, Örebro, Sweden

Astrid Danielsson, Falun, Sweden

Soo Aleman, Stockholm

Magnhild Gangsoy, Bodö, Norway

Intervention arm:

Uppsala, Tromsö and Gävle Preform and adjust to baseline RAVs before treatment choice

Control arm:

Örebro, Falun, Bodö and Stockholm Treats conventional i.e. without baseline before treatment choice

Aim to have in each arm (including SVR results) by end of 2016: 100 GT 1a, 40 GT 1b and 100 GT 3a patients
Which also reflect the normal distribution in Sweden and Norway

Preliminary results Oct 2015 in Intervention arm of prevalence at baseline:

RAV	Úppsala	Tromsö
M28V	14% (GT 1a, n=43)	15% (GT 1a, n=27)
A30K	2% (GT 3a, n=38)	4% (GT 3a, n=20)
Y93H	0% (GT 1a, n=43)	4% (GT 1a, n=27)
Y93H	10% (GT 1b, n=10)	0% (GT 1b, n=5)
Y93H	8% (GT 3a, n=38)	10% (GT 3a, n=20)

SVR results with NS5A combination treatment:

1 relapse in Uppsala and 2 in Tromsö, all GT 3a, F4 and no baseline RAVs No results yet from Control arm

Thank you!

(Lontok et al. Hepatology, 2015; Sarrazin. Journal of Hepatology 2015)

- *in vitro* fold-resistance with different GTs
- prevalence at baseline with population sequencing (cut-off 20%)

RAV	Approx. Prevalence at	Fold-Change in Resista	-Change in Resistance Compared to Wild-Type Replicon*			
	baseline m, n, o, p	Daclatasvir (DCV)	Ombitasvir (OMV)	Ledipasvir (LDV)		
M28T	1.2 % (GT 1a)	683 (GT 1a) ^a	8965 (GT1a)b	61 (GT 1a) ^c		
M28V	3.5 % (GT 1a)	1.3 (GT 1a) ⁱ	58 (GT 1a) ^c	NDA		
Q30E		7500 (GT 1a) ^a	NDA	5458 (GT 1a) ^c		
Q30H	0.6 % (GT 1a)	1450 (GT 1a) ^a	3 (GT 1a) ^j	183 (GT 1a) ^c		
Q30R		1217 (GT 1a) ^a and 1 (GT 1b) ^a	800 (GT1a)b	632 (GT 1a) ^c		
A30K	5 % (GT 3a)	20-100 (GT 3a)	NDA	NDA		
L31M	1.4 % GT 1a), 4 % (GT 1b)	350 (GT 1a) ^a and 3 (GT 1b) ⁱ	2 (GT 1a) ^k and 0.9 (GT 1b) ^k	554 (GT 1a) c and 2,5- 10 (GT 1b) d		
L31V		3350 (GT 1a) and 23 (GT 1b) ^a	8 (GT 1b) ^f	100-1000 (GT 1a) d		
H58D	< 1% (GT 1a)	483 (GT 1a)e	243 (GT1a) ^b	>1127 (GT 1a) ^c		
Y93C	0.6 % (GT 1a)	1850 (GT 1a) and 3.5 (GT 1b)e	1675 (GT1a) ^b	>1602 (GT 1a) ^c		
Ү93Н	1 % (GT 1a) 9 % (GT 1b) 8 % (GT 3a)	5367 (GT 1a)g, 19 (GT 1b)a and 2154 (GT3a)h	41383 (GT1a), and 77 (GT1b) ^b	3309 (GT 1a) and 1319 (GT 1b)		
Y93N	1 % (GT 1a) 0.7 % (GT 1b)	47017 (GT 1a) and 28 (GT1b) ^a	66740 (GT1a) ^b	>14706 (GT 1a) ^c		

^{*}HCV replicon phenotype results between different drugs should be interpreted with caution as data were generated by different assay conditions

a (Fridell et al., 2010), b (Williams et al., 2012), c (Lontok et al. 2015), d (Dvory-Sobol et al. 2014),e (Wang et al., 2012), f (DeGoey et al., 2014), g (Paolucci et al., 2013), h (Hernandez et al., 2013), i (Fridell et al., 2011) j (Krishnan et al., 2015), k (Krishnan et al., 2014), l (Lawitz et al., 2012), m (Dietz et al 2015) n (Nelson et al 2015) o (Sarrazin 2015) p (Lindström et al 2015)