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Non Alcoholic Steatohepatitis: Disease Problem and Unmet Needs

= 1in 3 adults in the U.S. has non-alcoholic fatty liver

disease

=  75% of people with NASH also have type 2 diabetes

= Fastest growing disease in China and India.

= Approximately 50 active programs with 38 distinct

therapeutic targets
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An ideal in vitro liver
model would fulfill various
unmet needs:

Unbiased novel target
discovery

Development of non-
invasive translational
biomarkers for diagnosis
and monitoring disease.

Understanding/predicting
efficacy differences, in

stratified sub-populations
(Personalized medicine).

Safety assessment under
disease-like conditions.



Underlying Mechanisms of Steatohepatitis are Complex
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Existing in vitro Models: Challenges and Opportunities

Species  Cell Type(s) Origin
Primary
Hepatocytes (Healthy/Patient)
Huh?7 Hepatoma
HepG2 Hepatocellular Ca
Hepatic Stellate Cells Healthy/Patient
Human
LX2 Stellate Cell line Immortalized
Hepatocytes +
Adipose Cells
Huh7 + LX2
Canine Hepatocytes Primary
Primary Hepatocytes
Rat H4IE Immortal!zed
H4IEC3 Immortalized
PAV-1 Immortalized
RAW 264.7
Macrophages and .
Mouse AML-12 Cell co- Immortalized
cultures

Challenges of existing models employing
static flat-plate cell cultures:

Dedifferentiation and loss of CYP activity.

Non-physiological levels of glucose and
insulin and loss of insulin sensitivity.

Altered baseline inflammatory state.
Hypoxia-reperfusion on media change.

Non-relevant drug and metabolite
concentration profiles

Opportunities for improvement:

Organotypic approaches (3-D, heterotypic
cell interactions, flow).

Physiological media formulations and drug

concentrations based on clinical
pharmacokinetics

Use of Translational biomarkers.

Big data —omic approaches
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Recreating Physiological Milieu and Parameters in a 3D Culture
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Adapted from: Nature Reviews Immunology 14, 181-194 (2014)

Configuration

= 3D cell configuration - modeled on sinusoid

Transport Hemodynamic Flow Transport with hepatocytes + non-parenchymal cells.
Inflow Outflow
= Simultaneous perfusion and hemodynamics -
allows control of drug, nutrient and oxygen
gradients
I torstitial Flow » Effluent and cells can be assessed from top
Dash et al, AJP 2013, Terelius et al Chem Bio 2015, Chapman et al 2016 and bottom separately.
Hepatocytes Restoration of 1. RNA-Seq Analysis
Treatment

Plated Biology

2. Functional Endpoints
| — | | — | I 11< e.g. MTT, Imaging, CYP Assays

3. Secreted Biomarkers
— HEMOSHEAR NONCONFIDENTIAL e.g. Albumin, Cytokines, FGF19



Liver-like Polarized Morphology and Function Maintained Over Time
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Dash et al SOT 2013, Marukian et al AASLD 2013
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Drug Responses Exhibited at Clinically Relevant Concentrations

Toxicity seen in Other Systems[]
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Rumack-Matthews nomogram for serum concentration thresholds

for clinical treatment of Acetaminophen poisoning.

Figler et al AASLD 2015.

Efficacy/Toxicity
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Dash et al Expert Opinion 2012

= Efficacy and toxicity responses seen at
concentrations that match clinical
therapeutic exposures.

= QOver 30 drugs assessed for mechanistic
differences using transcriptomics. (NIH
SBIR Award R44 DK091104-02)
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Insulin Sensitivity And Lipogenic Responses Maintained
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steatotic phenotype under hyperglycemic, hyperinsulinemic conditions.
e, Deering et al AASLD, 2012, Dash et al ADA 2013, Cole et al AASLD 2015



Applications of a Physiologically Responsive Liver Model

After demonstrating that the system maintained differentiated liver phenotype
as evidenced by polarized morphology, liver specific functions, drug
metabolizing enzyme and transporter activity and responsiveness to insulin,
we tested the model for the following applications:

1. Assessing on-target and off-target pharmaco-toxicology of drugs at
clinically relevant concentrations.

2. Distinguishing transcriptomic signatures of various phenotypes of drug
induced liver injury (DILI).

3. Studying underlying mechanisms of drug induced steatohepatitis that
could help understand potential NASH targets.

4. Developing a lipotoxic model with milieu mimicking metabolic disease.
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Assessing On-target Pharmacology of Obeticholic Acid
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Strongly induced
FGF19 in hepatocytes,
both at a gene and
protein level, confirming
a direct hepatic effect in
addition to the widely
appreciated FGF19
loop through the gut.

CYP7A1 was the most
down-regulated
differentially expressed
gene in the
transcriptome, with
simultaneous down-
regulation of the bile
synthesis pathway
genes.

Sanyal, Oral presentation AASLD 2015
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Pharmaco-toxicological Signature of Obeticholic Acid and Impact of CYP

Activity

Vehicle Control

r10.5uM Obeticolic Acid

Bile Secretion (*#) 0O10uM Obeticolic Acid
2,0

Extracellular
Matrix

Bile Synthesis (*)

Apoptosis FXR Gene

Choleseterol
Biosynthesis (*)

Reactive Oxygen
Species (*)

Triglyceride

IL6 Signaling (*) Synthesis (*#)

= Pathway analysis and scoring confirmed beneficial effects

of obeticholic acid on reducing steatotic indices and
inflammatory signaling.

= Functional CYP assays revealed that obeticholic acid
suppressed CYP1A2 and CYP3A4 activity.
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Distinguishing Drug Induced Steatohepatitis Signatures From Other Forms

of Drug Induced Liver Injury
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Transcriptomic analysis allowed us to characterize distinct

signatures for different drugs having different DILI phenotypes.

Assays like Nile Red (neutral lipid) and secreted protein
biomarkers in effluent media were confirmatory functional
endpoints that defined the steatohepatitic phenotype.
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Understanding Mechanisms and Potential Targets of Steatohepatitis
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» Differential analysis of transcriptomic signatures for different drugs causing steatohepatitis
versus those causing NASH may offer insights into mechanisms and targets.
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Liver Models to Recapitulate Metabolic Disease Spectrum

HEALTHY FATTY FATTY LIVER + ADVANCED
INFLAMMATIO LIPOTOXIC

Healthy-Milieu .~ Steatotie Milieu

Lvl[jotoxu: Mllleu LIpOtOXIC M|l|)eu +
(Glucose; Insulin)

(Steantlc #«Fatty - TN

4 'HEPATIC TRIGLYCERIDES LIPID ACCUMULATION INFLAMMATORY CYTOKINES

4 § ~ 128 -
o o 4 =
- LL S
8 = o
=3) ks & 32-
232 x o
e o 2 —
27 Z o 8-
: : N g~
T = |
1 1 S 1 2
2 g
A GLUCOSE: - + + A GLUCOSE: - + + + A GLUCOSE: - + + +
A INSULIN: - + + AN INSULIN: - + + + A INSULIN: - + + +
FEA: - - + FFA: - - + + FFA: - - + +
TNF: - - - + TNF: - - - +

= Lipotoxic metabolic disease model has Kupffer cells and stellate cells added on opposite side of
the membrane



Ongoing Validation of Drug Responses in the Advanced Lipotoxic Liver
System
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Conclusions and Future Directions

The physiologically responsive liver model allows assessment of on-
target and off-target pharmaco-toxicology of drugs at clinically relevant
concentrations.

Comparative analysis of transcriptomic responses of drug induced
steatohepatitis, lipotoxic NASH-like conditions and drugs that impact
NASH could help identify and understand potential NASH targets.

Ongoing/Future activities include:

Benchmarking signatures against clinical samples.
Analysis of non-parenchymal cell response within system.

Lipidomic analysis to gain a better understanding of lipid fractions
under lipotoxic milieu and how they correlate with transcriptomics.

Characterization of translatable functional responses such as
histology and extracellular matrix composition measurements.

Comparative analysis of drug response under healthy versus
lipotoxic conditions and stratified patient derived hepatocytes
versus human hepatocytes could provide additional insights about

useful applications of this system.
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