The Bile Acid Biome and its Relevance for NAFLD and Oncogenesis

Phillip Hylemon, Ph.D

Department of Microbiology and Immunology School of Medicine Virginia Commonwealth University McGuire Veterans Affairs Medical Center Richmond, Virginia Paris Nash Symposium, June 30, July 1, 2016

Outline of Presentation

- I. Introduction
- II. Gut microbiome
- III. Metabolism of bile acids by gut microbiota
- a) Bile acid 7α-dehydroxylation
- b) Bile acid 7α-dehydratase
- IV. Regulation of bile acid pool composition by gut bacteria
- a) Implication for bile acid cell signaling
- V. Deoxycholic acid and liver cancer
- VI. Summary

The Human Body as an Ecosystem

The Human Body is a Complex Ecosystem: Cells in the Body and Microbiome Interact; Both are Regulated by Diet

- The adult human body contains 10 trillion mammalian cells and 100 trillion bacterial cells and most are in the GI tract.
- The human gut contains ~2,000 bacterial species and >99% are obligate anaerobic bacteria.
- The combined genomes of gut bacteria encodes 3.5 million non-redundant genes and is ~143-times greater than the mammalian genome.
- The lumen of the GI tract is a highly anaerobic environment.
- Gut bacteria can carry out hundreds of enzymatic reactions that host cells can not catalyze.
- Approx. 35% of all blood metabolites are derived from gut bacterial metabolism.

Bacteria Levels in the Gastrointestinal Tract

Small Intestine

Low

High

A: Duodenum (25cm) pH 5.7~6.4 ~10³ Bacteria/ml Lactobacillus spp. Streptococcus spp.

B: Jejunnum (1.0m) pH 5.9~6.8 ~10⁴ Bacteria/ml

Lactobacillus spp. Streptococcus spp. Staphylococcus spp. Veillonella spp.

C: Ileum (2.0m) pH 7.3~7.7 10⁶~10⁸ Bacteria/ml

Enterobacteria, Enterococcus spp. Bacteroides, Clostridia Lactobacillus spp. Veillonella spp.

Large Intestine

D: Cecum/Colon (150cm) pH 5.7~6.8 ~10¹¹ Bacteria/g

Bacteroides, Bifidobacterium, Eubacterium Ruminococcus, Peptostreptococcus Propionibacterium, Clostridia, Lactobacillus Escherichia, Streptococcus, Methanobrevibacter

Normal Gut Microbiota Composition at Phylum Level

Claesson et al PNAS 2010

Substrates for Intestinal Microflora

Endogenous:

Sloughed intestinal cells (100-200g/d), bile components

Exogenous:

Resistant Starch; Plant polysaccharides; Proteins, Sulfate

POLYSACCHARIDE FERMENTATION IN THE HUMAN COLON

Enterohepatic Circulation Of Bile Acids

Bile Salt Biotransformations By Intestinal Bacteria

но

Accumulation of Deoxycholic Acid in Human Bile: Absence of Bile Acid 7α-Hydroxylation in Human Liver

Ridlon, JM et al. J. Lipid Res. 2006 (47)241-59

Bile Salt Biotransformations By Intestinal Bacteria

но

Phylogenetic analysis of cholic acid 7α -dehydroxylating bacteria

Ridlon JM et al. Gut Microbes, 2013

Intermediates in the bile acid 7α -dehydroxylation pathway in C. scindens

•24-¹⁴C] CA incubated with Cell-extracts of C. scindens Prepared from CA induced Or uninduced control

 Products scraped from TLC and identity determined by stereospecific hydroxysteroid dehydrogenases, and mass spectrometry

The Bile Acid 7α-dehydroxylation Pathway in Clostridium scindens

Bile Acid Inducible Operons Encoding Enzymes in the 7^α-dehydroxylation Pathway

C. scindens VPI 12708

3-oxo- Δ^4 -7 α -cholate

3-oxo-∆4,6-deoxycholate

Structure of Bile Acid 7α-Dehydratase

Bhowmik S. et al. (2016) Proteins 84(3):316-331.

Active Site of Bile Acid 7-alpha-Dehydratase

Bhowmik S. et al. (2016) Proteins 84(3):316-331.

What controls the levels of deoxycholic acid in human bile?

 Numbers and activities of cholic acid 7αdehydroxylating bacteria in GI tract

Berr F. et al. Gastroenterology. 1996; 111:1611-20

2. Intestinal transit time

> Thomas, L.A. et al. Gastroenterology. 2000; 119;806-15

3. Western diet

O'Keefe S. J. et al. Nat. Commun. 2015; 6:6342

ACTIVITIES AND LEVELS OF CHOLIC ACID 7α-DEHYDROXYLATING BACTERIA IN CHOLESTEROL GALLSTONE PATIENTS WITH DIFFERENT LEVELS OF DEOXYCHOLIC ACID

Berr F. et al. Gastroenterology 1996; 111:1611-20.

What controls the levels of deoxycholic acid in human bile?

 Numbers and activities of cholic acid 7αdehydroxylating bacteria in GI tract

Berr F. et al. Gastroenterology. 1996; 111:1611-20

2. Intestinal transit time

> Thomas, L.A. et al. Gastroenterology. 2000; 119;806-15

3. Western diet

O'Keefe S. J. et al. Nat. Commun. 2015; 6:6342

Bile Acids are Hormones and Gut Bacteria Control the Bile Acid Pool Composition

• Implications for Regulation of Hepatic Physiology and Metabolism

Effect of Bile Acid Structure on Activation of Nuclear Receptors and G-protein Coupled Receptors

Nuclear receptor	Bile acid agonist
Farnasoid X Receptor	CDCA > LCA = DCA > cholic acid
Pregnane-activated receptor	LCA > DCA > cholic acid
Vitamin D receptor	3-oxo-LCA > DCA > cholic acid
G-protein coupled receptors	
TGR-5	DCA > LCA > CDCA > cholic acid
Sphingosine-1-phosphate	Taurine or glycine conjugated
receptor 2	Bile acids
(M _{2,3}) muscarinic receptors	T-LCA > T-DCA > T-cholic acid

Microbial Bile Acid Gateway Reactions

Accumulation of Deoxycholic Acid in Human Bile is Associated with Increased Risk of Colon Cancer and Possibly Liver Cancer: Absence of Bile Acid 7α -Hydroxylation in Human Liver

Ridlon, JM et al. J. Lipid Res. 2006 (47)241-59

Association of Deoxycholic Acid and Colon Cancer

- 1. Found in fecal water 100-300 μ M in high risk individuals
- 2. Can cross colonocyte plasma membranes without transporter
- Activates cell signaling pathways associated with tumorigenesis e.g. Activates the Epidermal Growth Factor Receptor (EGFR) →AKT, ERK1/2→ induces COX-2; β-catenin, Protein Kinase C
- 4. Increased in "Western type" diets.
- 5. Found in significantly higher concentrations in blood, bile and feces of colon cancer patients and patients with polyps vs controls.
- 6. Animal model studies show promotion of colon cancer by deoxycholic acid.

Deoxycholic Acid Activates the EGFR

Possible Mechanisms of Activation

1. Stimulates superoxide radicles that inhibit phosphotyrosine phosphatases

Qiao L. et al. Mol Biol Cell 2001; 12(9);2629-45

2. Activates matrix metalloproteinases releasing EGFR ligands i.e. TGF α , amphiregulin

Werneburg N.W. et al. A. J. Physiol Gastrointest Liver Physiol 2003; 285:G31-36

3. Increases intracellular calcium preventing EGFR degradation.

Centuori S. M. et al. BBA Molecular and Cell Biology; 2016; S1388-1981:30100-7

Deoxycholic Acid and Liver Cancer

Yoshimoto S. et al. 2013, Nature; 499(7456)97-101

Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome Yoshimoto S. et al. 2013, Nature; 499 (7456) 97-101

"Senescent cells often develop a secretory profile composed mainly of inflammatory cytokines, chemokines and proteases, a typical signature termed senescence-associated secretory phenotype (<u>SASP</u>)".

Cellular Senescence in Hepatic Stellate Cells

nature

Yoshimoto S. et al. (2013) Nature

Antibiotic Treatments Alleviate Obesity-induced HCC Development

Yoshimoto S. et al. (2013) Nature

Bacterial metabolite promotes obesity-induced HCC development

Yoshimoto S. et al. (2013) Nature

Summary

- 1. The human bile acid pool composition is regulated by diet, intestinal transit time and gut microbiota. "Western diets" shifts bile acid conjugation to taurine and increases deoxycholic acid levels in humans.
- 2. The bile acid pool composition and conjugation alters the activation of specific nuclear receptors (FXR, Vitamin D, PXR) and GPCRs (TGR5, S1PR2) regulating hepatic metabolism and inflammation.
- 3. Increased levels of deoxycholic acid in the human bile acid pool is associated with increased hydrophobicity, inflammation, and cancers of the liver and colon

Our Research Team

Our Research Team

- VCU
- Phil Hylemon, Ph.D.
- Huiping Zhou, Ph.D.
- Jason Ridlon, Ph.D.
- D.J. Kang, Research Associate
- Spencer Harris, MD, Ph.D. Student
- Scripps Research Institute
- Shiva Bhowmik, Ph.D.
- Scott Lesley, Ph.D.
- Supported by RO1DK-057543,(PBH, HZ) and VA Merit Grant to PBH (BX001328)