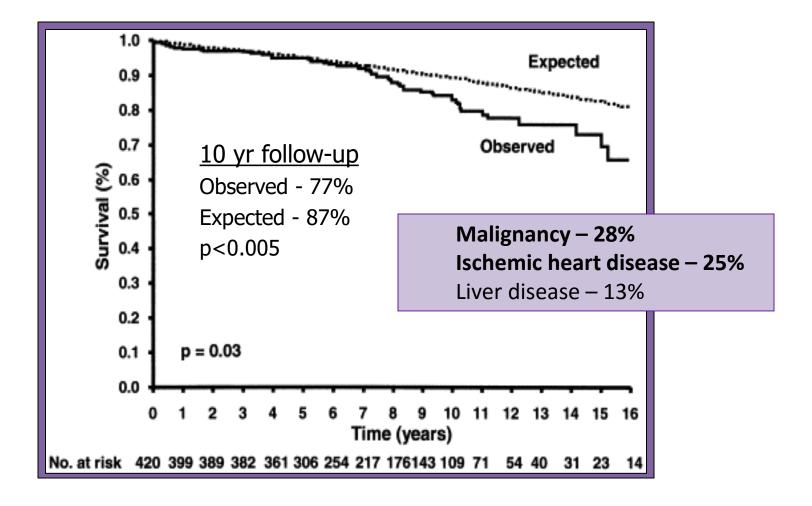
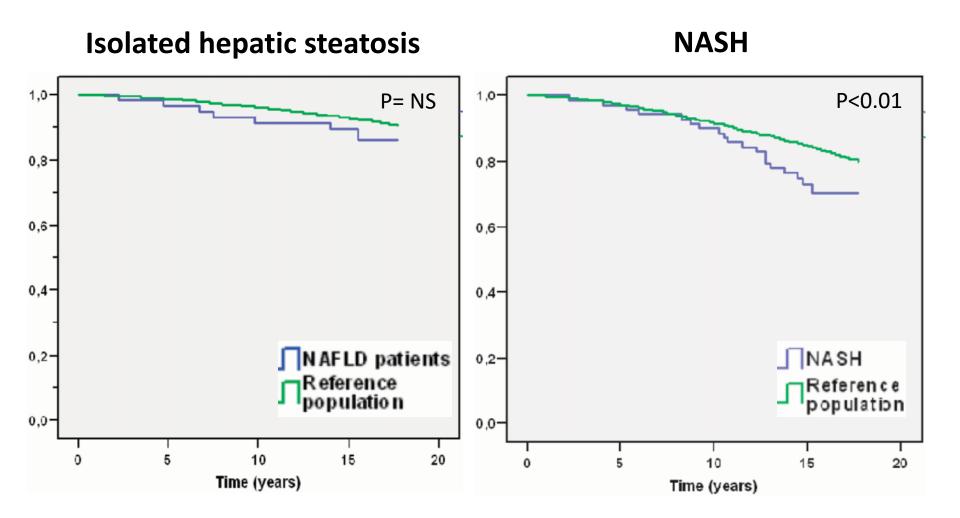


NAFLD and cardiovascular disease: What is the connection?

Paris NASH symposium 2016 Mary E. Rinella, M.D. Northwestern University Feinberg School of Medicine



Disclosures


- **Consulting:** Abbvie, Intercept, Fibrogen, NGM Bio, NuSirt, Exhalenz
- Editorial board: Hepatology, Seminars in Liver Disease

No conflicts pertaining to content

Mortality in NAFLD

Mortality due to NASH and isolated hepatic steatosis

Ekstedt et al., Hepatology 2006

Histologically defined NAFLD and cardiovascular mortality

Author ^{ref}	N	Follow-up (yrs)	Proportion of deaths due to CVD (%)	Findings
Angulo ⁵	619	12.6 (median)	38.3	CVD most common COD Extent of fibrosis independently assoc c death
Söderberg ¹	118	24 (median)	30	♠Death in those w NASH, CVD most common COD
Ekstedt ²	129	13.7 <u>+</u> 1.3 (mean)	16	♠CVD death NASH not SS CVD most common COD
Dam-Larsen ⁴	170	20.4 (median)	38	No difference between SS and control
Rafiq ⁵	173	18.5 (median)	12.7	CVD death NAFLD=NASH

¹ Söderberg et al., *Hepatology* 2010;² Ekstedt et al., *Hepatology* 2006; ³ Adams Dam-Larsen et al., *Scand J of Gastroenterol* 2009; ⁵ Rafiq et al. *Clin Gastro Hep* 2009; 5 ^{Angulo et al. Gastroenterology 2015}

NHANES III suggested that NAFLD did not increase mortality

- Population-based prospective cohort study
- 11,371 patients: 1988-94, follow up mortality to 2006
- Groups:
 - 'Normal'=No fat by US
 - 'NAFLD' = Fat on US + normal ALT
 - 'NASH' = Fat on US + elevated ALT
 - Average age mid-40s
- No increase in mortality after mean follow-up of 14.6 yrs

NHANESIII: Association between Fibrosis and Overall and Cause-Specific Mortality among Subjects with NAFLD

		Age, Sex-adjusted	Multivariable-adjusted
	n	Hazard ratio (95% CI)	Hazard ratio (95% CI)
Mortality from all cause	778		
Minimal	251	1	1
Intermediate	404	1.50 (1.20-1.88)	1.40 (1.09-1.81)
Advanced	123	2.26 (1.59-3.21)	1.80 (1.23-2.64)
Cardiovascular disease	296		
Minimal	81	1	1
Intermediate	167	2.43 (1.69-3.50)	2.49 (1.71-3.64)
Advanced	48	3.34 (2.00-5.60)	3.22 (1.92-5.42)

Multivariable models adjusted for age, sex, race-ethnicity, education, income, diabetes, hypertension, smoking status, waist circumference, alcohol consumption, caffeine consumption, total cholesterol, high-density lipoprotein-cholesterol, transferrin saturation, and C-reactive protein.

Kim et al. Hepatology 2013

Limitations of population based studies

- Well designed to measure CV outcomes
- Imaging or serology alone are not reliable for defining hepatic disease
 - Allocation: substantial overlap in comparison groups (*i.e.* limits of detectability, often advanced NASH has less steatosis, lower enzymes)
 - ? negate potential effect of NAFLD/NASH on CV mortality
- Highlights importance of accurate distinction between NAFLD and NASH to assess outcomes

Predicting CVD in patients with NAFLD

- Framingham Risk Score: (Age, gender, TC, HDL, smoking and SBP) underestimates risk in the setting of the Metabolic Syndrome²
- Pooled Cohort Equation: (FRS + race, DBP, Rx for HTN, DM)³
- Global risk prediction studies in NAFLD are flawed: derived from traditional CV risk factors
- Factors that are not accounted for in traditional models of cardiovascular risk:
 - Insulin resistance
 - Triglycerides
 - Obesity

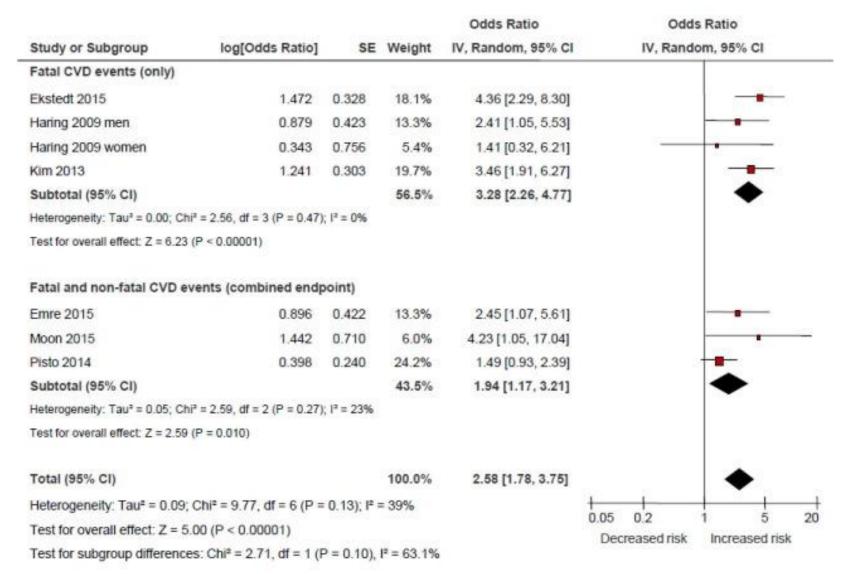
¹ Treeprasertsuk et al., *Liver International* 2012; ² Dekkar et al., *Circulation* 2005; ³ Stone et al. 2013

Estimated 10 year CVD risk according to NAFLD severity

		NAFLD severity					
	None	Mild	Mod	Severe	P for trend		
Pooled Cohort Equation	2.59	3.93	4.68	5.23	<0.01		
Adjusted OR		1.52 (1.24- 1.86	2.56 (1.83- 3.59)	3.35 (1.52- 7.29)			
Framingham Risk Score	4.55	6.39	7.33	7.13	<0.01		
Adjusted OR		1.65 (1.45- 1.86)	1.62 (1.3- 2.01)	1.72 (0.93- 3.17)	<0.001		

OR for >7.5% CVD risk by PCE had stronger correlation with increasing severity of steatosis after adjustment for traditional CV risk factors

Lee et al. Endocrinology and Metabolism 2016

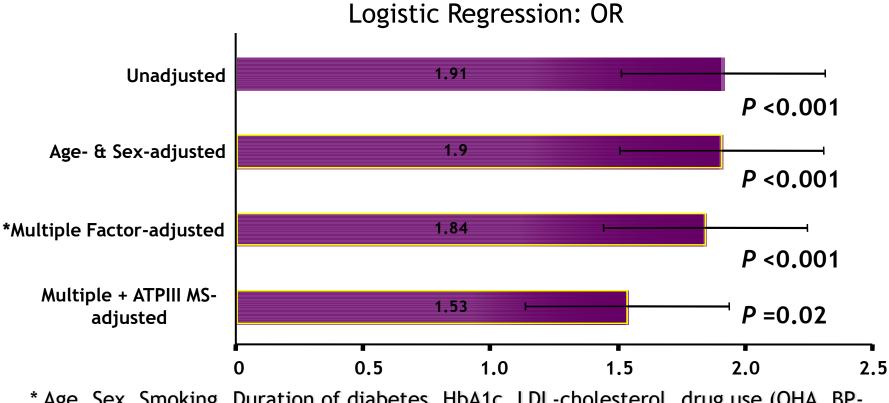

Risk of incident CVD events (fatal, non-fatal or both) associated with NAFLD

- 16 observational studies
- 34,043 adults
 (36.3% NAFLD)
- ≈2,600 CVD outcomes (>70% CVD deaths)
- Median of 6.9 years

Study or Subgroup	Iog[Odds Ratio]	SE	Weight	Odds Ratio IV, Random, 95% CI	Odds Ratio IV, Random, 95% Cl
Fatal CVD events (only)	Partition of the second		ALC: NO.	THE CONTRACTOR OF A	Ch. Harlosoft, Co.to. at
Adams 2010	0.095	0.516	3.6%	1.10 [0.40, 3.02]	
Ekstedt 2015	0.438	0.170	7.0%	1.55 [1.11, 2.16]	
Haring 2009 men	-0.248	0.160	7.1%	0.78 [0.57, 1.07]	
Haring 2009 women	-0.020	0.225	6.5%	0.98 [0.63, 1.52]	+
Jepsen 2003	0.741	0.078	7.7%	2.10 [1.80, 2.45]	
azo 2011	-0.150	0.127		0.86 [0.67, 1.10]	-
Zhou 2012	1.184	0.394	4.7%	3.27 [1.51, 7.08]	
Subtotal (95% CI)	1111474	No.	44.1%	1.31 [0.87, 1.97]	*
Heterogeneity: Tau ¹ = 0.25; Cl	h≓ = 61.73, df = 6 (₽ •	0.0000	1); I ² = 90 ⁴		
Test for overalt effect: Z = 1.28					
Fatal and non-fatal CVD (events (combined	endpo	int)		
Emre 2015	0.896	0.422	4.4%	2.45 [1.07, 5.61]	
Pisto 2014	0.875	0.175	7.0%	2.40 [1.70, 3.39]	
Targher 2007	0.625	0.222	6.5%	1.87 [1.21, 2.89]	
Wong 2015	-0.105	0.135	7.3%	0.90 (0.69, 1.17)	+
Zeb 2016	0.350	0.178	7.0%	1.42 [1.00, 2.02]	
Subtotal (95% CI)	-7275-70	100000	32.2%	1.63 [1.06, 2.48]	•
Heterogeneity: Tau ^a = 0.18; Cl	h# = 23,41, df = 4 (P =	0.0001); P = 83%		1256
Test for overall effect Z = 2.24	4 ((P = 0.02)				
Non-fatal CVD events					
El Azeem 2013	1,238	0.164	7.1%	3.45 (2.50, 4.76)	
Fracanzani 2016	0.688	0.34	5.2%	1.99 [1.01, 3.92]	<u>⊢+</u>
Hamaguchi 2007	1.415	0.48	3.9%	4.12[1.58, 10.74]	
Moon 2015	1.442	0.710	2.4%	4.23 [1.05, 17.04]	
Pickhardt 2014	0.104	0.358	5.1%	1.11 [0.55, 2.24]	
Subtotal (95% Cl)			23.6%	2.52 [1.52, 4.18]	•
leterogeneity: Tau [†] = 0.18; Cl	hP = 10.22, df = 4 (P =	0.04); 1	7 = 61%		
Test for overall effect Z = 3.58	8 (P = 0.0003)				
Total (95% CI)			100.0%	1.64 [1.26, 2.13]	•
Heterogeneity: Tau ² = 0.23 Test for overall effect: Z = 3 Test for subgroup difference	3.69 (P = 0.0002)			0.0	5 0.2 1 5 20 Decreased risk Increased risk

Targher et al. Journal of Hepatology, 2016

Risk of incident CVD events (fatal, non-fatal or both) associated with NAFLD severity

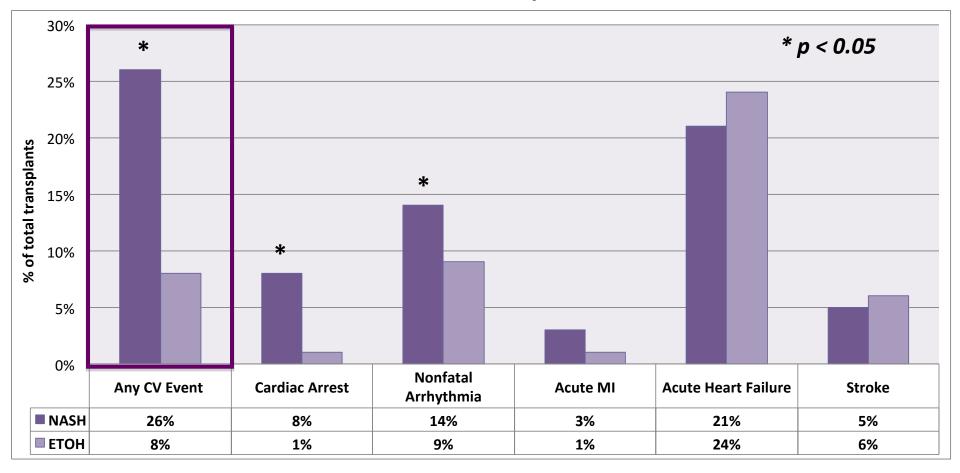


Targher et al. Journal of Hepatology, 2016

NAFLD and incident CVD in Type 2 Diabetes

Nested case-control study in 2,103 T2DM, free of CVD at baseline¹.

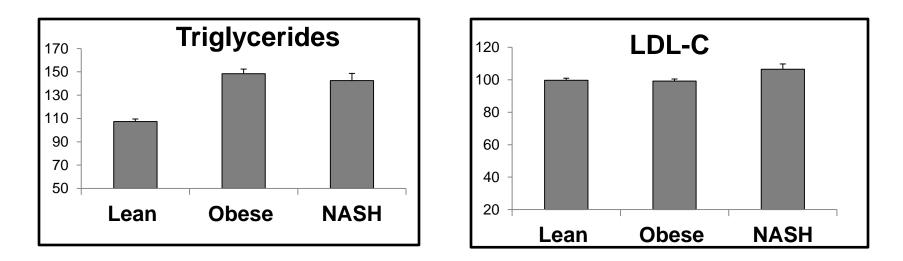
• 248 cases had a CV event at follow-up (5 yrs), and were compared with 496 who remained free of diagnosed CVD.


* Age, Sex, Smoking, Duration of diabetes, HbA1c, LDL-cholesterol, drug use (OHA, BP-lowering, statins/fibrates, Aspirin)

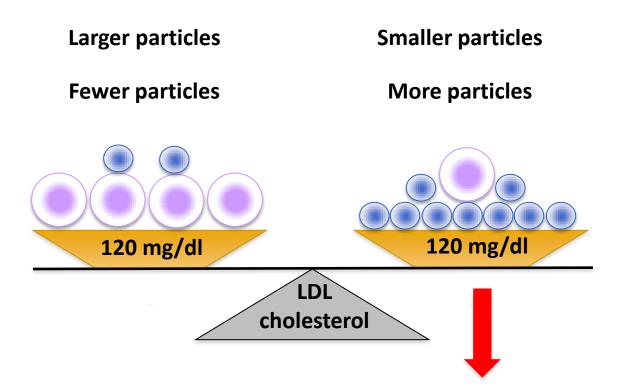
Courtesy of AJS

Targher et al., Diabetes 2005; Targher et al. Diabetes Care 2007

Cardiovascular Events within 1 year of Liver Transplantation


Revised Cardiac Risk index: Expected event rate: 6.6%

Odds ratio for any CV event: 2.69 (95% CI: 1.32-6.34)


VanWagner, Bhave, Te, Feinglass, Alvarez, Rinella. Hepatology. 2012 Nov;56(5):1741-50.

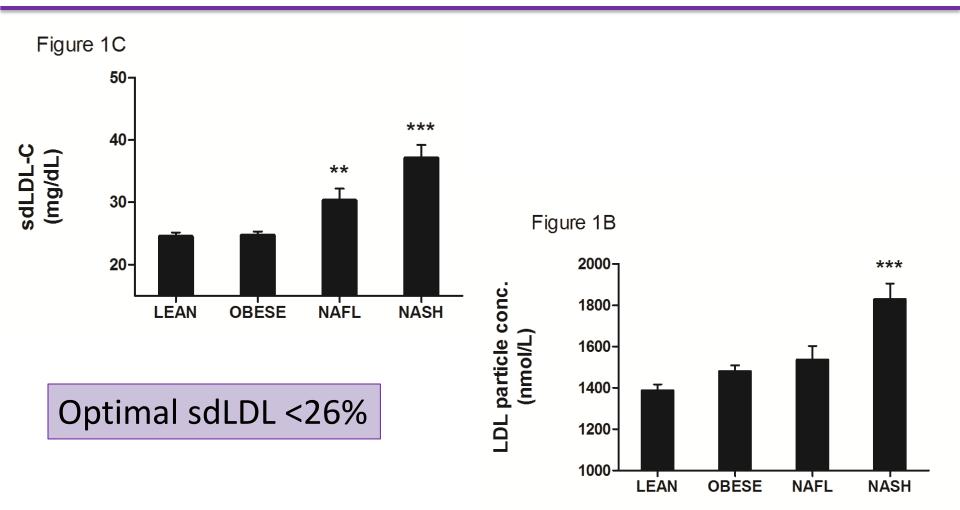
Traditional lipid markers of CV risk are similar between NASH and obese controls

Beyond calculated LDL

Slower plasma clearance Greater artery uptake & retention Faster oxidation

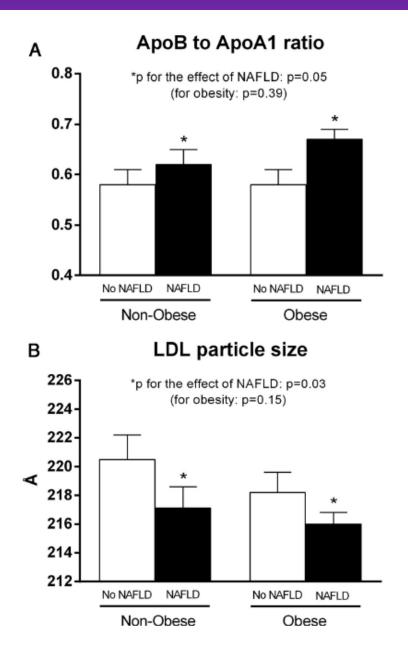
Courtesy of AJS

Lipoprotein particle size and NAFLD severity: MESA cohort


Particle size (nm)	No NAFLD N=2793	Mild NAFLD N=432	Moderate NAFLD N=291	Severe NAFLD N=64	Adjusted p-value	
VLDL	49.8 <u>+</u> 8.4	55.3 <u>+</u> 9.2	56.1 <u>+</u> 10	59.2 <u>+</u> 10	<0.001	
LDL	20.9 <u>+</u> 0.77	20.5 <u>+</u> 0.74	20.4 <u>+</u> 0.69	20.4 <u>+</u> 0.79	NS	
HDL	9.19 <u>+</u> 0.42	8.89 <u>+</u> 0.36	8.85 <u>+</u> 0.29	8.97 <u>+</u> 0.39	<0.001	
Particle ratios						
LDL small/large	4.3 <u>+</u> 15	9.8 <u>+</u> 47	8.5 <u>+</u> 15	11.2 <u>+</u> 17	<0.001	
HDL small/large	5.6 <u>+</u> 9.9	9.2 <u>+</u> 17	8.4 <u>+</u> 9.1	11.0 <u>+</u> 14	<0.001	

*P values adjusted for age, gender and race/ethnicity. Derived from multivariable robust linear regression model

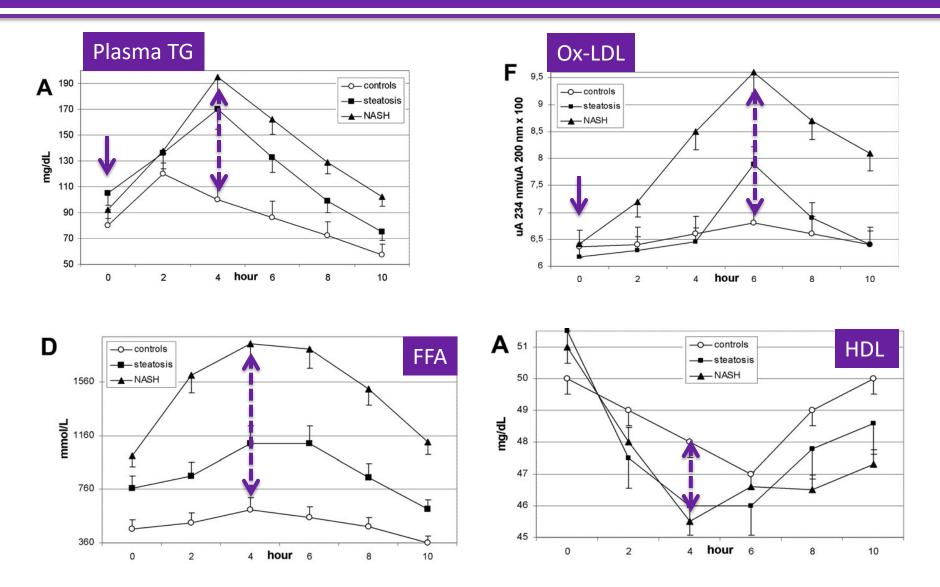
NAFLD deternined by CT


DeFilippis et al., Atherosclerosis 2013

Atherogenic dyslipidemia in lean, obese and NAFLD

Siddiqui et al., CGH 2014

Dyslipidemia driven by steatosis and IR not NASH


Table 2.	Clinical Characteristics of Patients Accore	ding
to the Pres	ence of NASH	

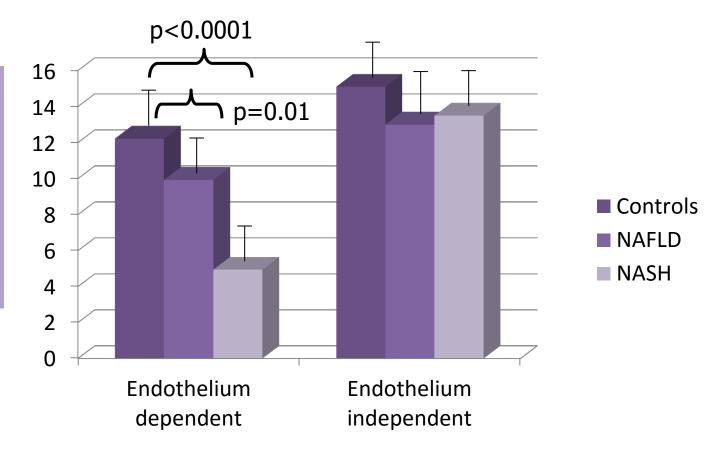
	No NASH (n = 33)	Definite NASH (n = 91)	P Value
Age, y	61 ± 1	58 ± 1	.15
Gender (male), %	85%	89%	.54
BMI, kg/m ²	32.8 ± 0.8	35.0 ± 0.4	.01
TBF, %	38 ± 1	37 ± 1	.63
Prevalence of T2DM, %	100%	93%	.34
FPG, mg/dL	142 ± 8	146 ± 4	.63
FPI, μ IU/mL	12 ± 1	19 ± 2	.01
Hemoglobin A1c, %	6.9 ± 0.2	7.3 ± 0.1	.09
FFA, mmol/L	0.39 ± 0.03	0.41 ± 0.02	.56
Cholesterol, mg/dL	164 ± 8	172 ± 5	.42
Triglycerides, mg/dL	131 (100–162)	155 (111–234)	.05
LDL-C, mg/dL	93 ± 7	93 ± 4	.95
HDL-C, mg/dL	42 ± 2	39 ± 1	.24
On statins, %	72%	79%	.44
Liver fat, %	13 ± 2	12 ± 1	.58
AST, IU/L	28 ± 2	41 ± 3	.006
ALT, IU/L	34 ± 3	54 ± 4	.003

Abbreviations: ALT, aminotransferase; AST, aspartate aminotransferase; FPG, fasting plasma glucose; TBF, total body fat.

Bril et al., JCEM 2016

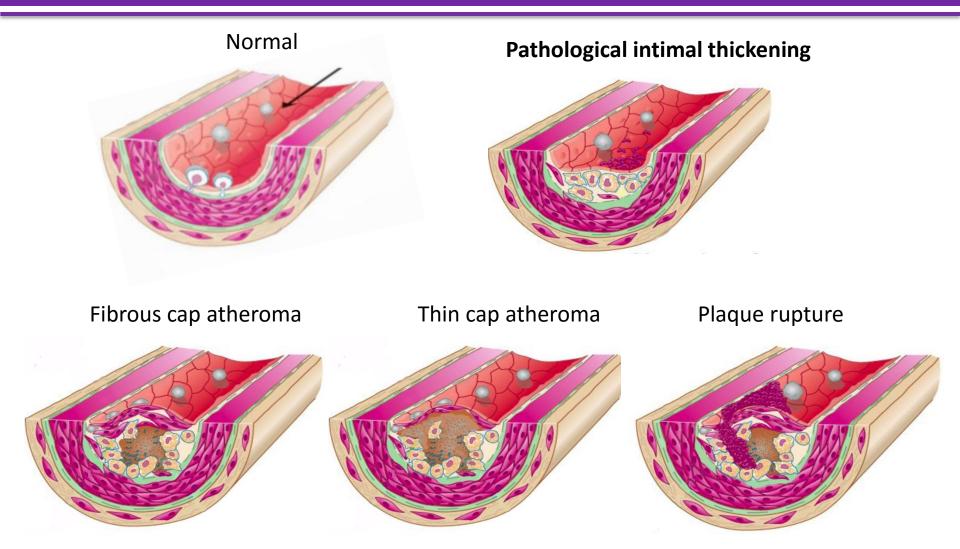
Pro-atherogenic post prandial lipid metabolism

Musso et al., Hepatology 2012


Development of atherosclerosis

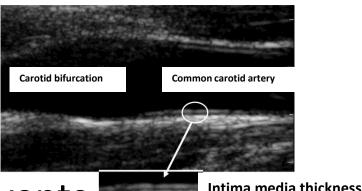
Sub-clinical

- Endothelial dysfunction
- Carotid intima media thickening
- Coronary artery calcium scores
- Impaired coronary flow reserve

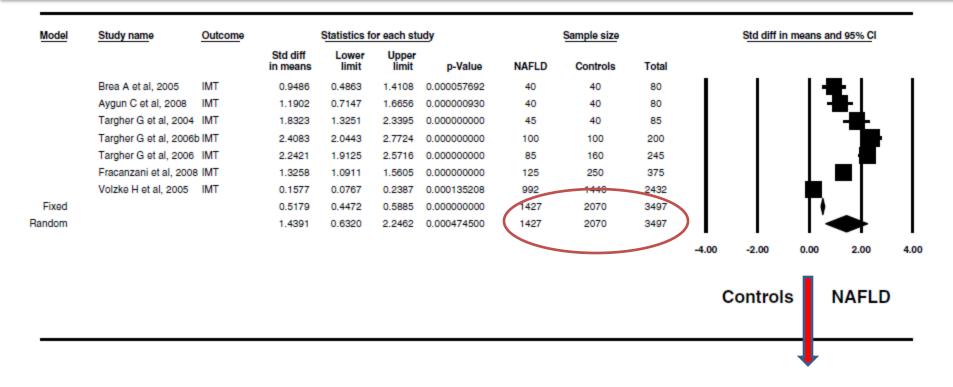

Dysfunctional Endothelium in fatty liver

- 52 NAFLD cases with age/sex matched controls
- FMV (controlling for BMI, IR and cardiac risk assessment by FRS calculated ¹

¹ Villanova et al., *Hepatology* 2005; Salvi et al. J Hypertension 2010; Pacifico et al. Hepatology 2010


Development of Atherosclerosis

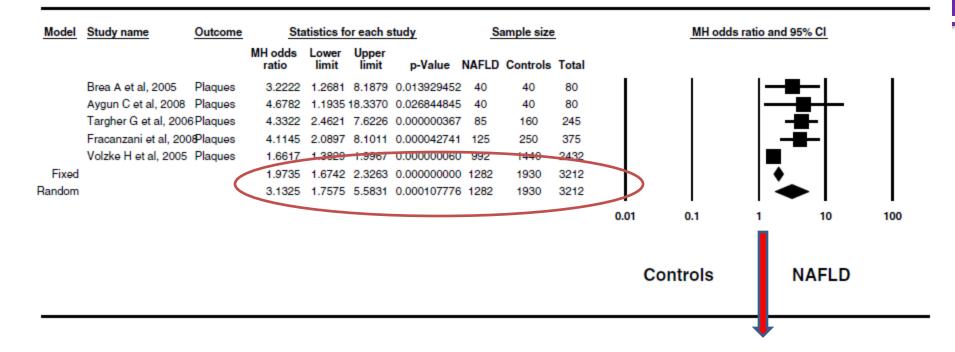
NAFLD and carotid intima-media thickening (CIMT)


 Well validated tool to detect atherosclerosis in asymptomatic patients

- Independently predicts CVD events
- Improves risk prediction for CVD when added to Framingham risk factors
- Several studies have shown an association with NAFLD though this is less convincing after adjusting for MetS and other confounders

Sonoda et al., Int J Cardiol 2004; Fernandes et al., J Amer Coll Cardiol 2006; Polak et al. JAHA 2013

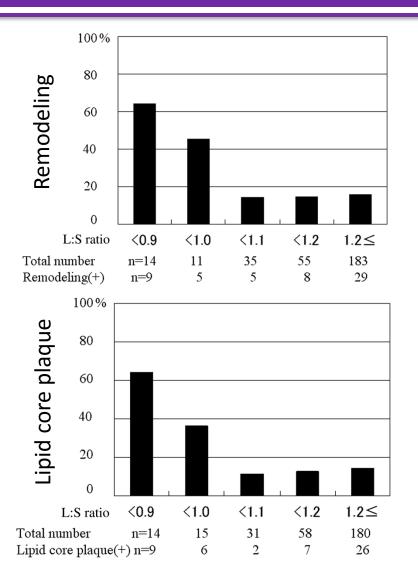
CIMT strongly associated with NAFLD


Intima-media thickness is strongly associated with NAFLD: Patients with NAFLD (n: 1427) have an increase of 13% of IMT in comparison with individuals without fatty liver (n:2070)

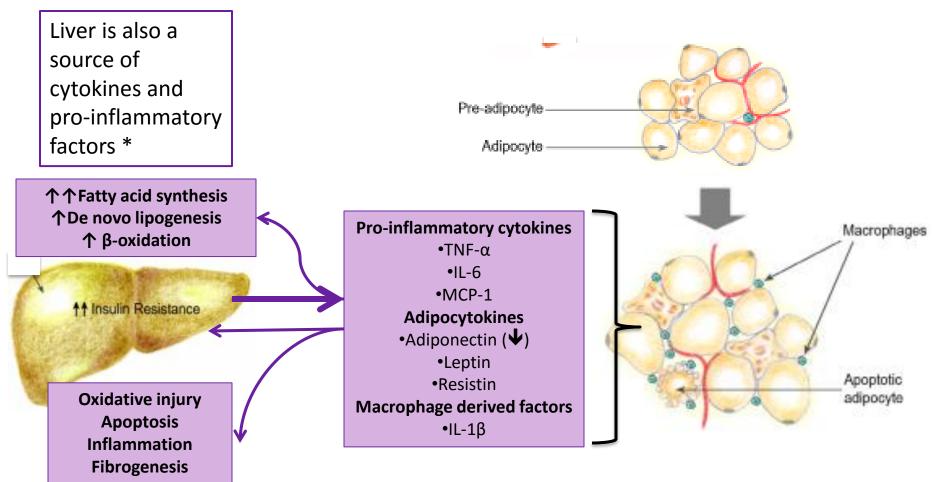
Courtesy of S. Sookoian

Sookoian S and Pirola CJ, Journal of Hepatology 2008

Higher prevalence of carotid plaques in NAFLD


The comparison between cases (n: 1282) and controls (n:1930) showed that carotid plaques were more frequently observed in NAFLD patients (OR 3.13 CI 95% 1.75-5.58, p<0.0002 random model)

Courtesy of S. Sookoian


Sookoian S and Pirola CJ, Journal of Hepatology 2008

NAFLD is associated with increase in vulnerable plaque and overt CAD

- Independent of:
 - Age
 - Gender
 - Smoking
 - BMI
 - -HTN
 - Impaired fasting glucose/DM
 - Dyslipidemia

Adipose tissue expansion – is it the nidus of the problem?

Adapted from Pillai & Rinella, Clin of North America 2010

Adipose tissue insulin resistance in patients with NAFLD

- 40 patients with NAFLD (20 isolated steatosis, 20 NASH) and no obesity, DM or dyslipidemia
- Matched for adiposity and features of the Metabolic syndrome
- Aim: to determine if adipose tissue dysfunction mediated liver disease progression and cardiometabolic risk in NAFLD independent of obesity

NASH: Higher adipose IR and expression of proatherogenic markers independent of adiposity or MetS

		Controls	Isolated steatosis	NASH	P value
	Adipo-IR index	17.1+1.9	49.5+403*	82.4+8.2**	0.0003
Endothelial	E-selectin	18.5+2.3	25.3+2.4**	45.9+2.8**	0.004
dysfunction	ICAM-1 mg/mL	194.2+803	239.4+8.2*	279.1+9.3**	0.029
Nitrosative	CRP mg/mL	1.2+0.5	1.9+1.1*	2.7+1.2**	0.029
stress	NT mmol/mL	5.1+4.9	16.1+9.2**	27.8+15.3**	0.012

*p<0.05, **p<0.01 isolated steatosis vs. controls, NASH vs. isolated steatosis

Musso et al., Hepatology 2012

NASH: Independent association with procoagulant and inflammatory factors

 Circulating levels of inflammatory markers

 – CRP, IL-6, MCP-1, TNF-α

• Pro-coagulant factors

- PAI-1^{2,3}, fibrinogen, Factor

 VII, ETP-ratio⁵, Factor VIII⁵,
- ↓Protein C^{4,5}*,

Markers of oxidative stress

*Compared NAFLD to controls

¹ Targher *NEJM* 2011;² Targher *Semin Thomb Hemost* 2009; ³Thuy *J Nutr* 2008; ⁴Bell *J Hepatol* 1992; ⁵Tripodi J. Hepatology 2014

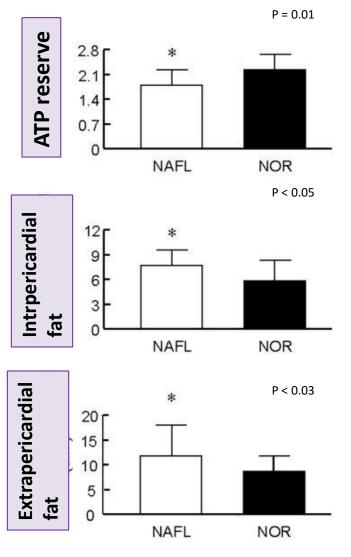
Circulating levels increase from controls to IHS to NASH in a stepwise fashion

Differential hepatic expression of atherosclerosis genes in patients with NASH vs. isolated steatosis

Role	Gene	NASH *	P value
Atherosclerosis	PAI2	2.1	<0.007
risk	TGFβ1	3.8	<0.008
CV risk	ACE	2.1	<0.007
Inflammation/c	CSF2	2.5	<0.002
ytokine signaling	IL1A	2.5	<0.005
	IL3	2.1	<0.007

* Fold change compared to isolated steatosis

Sookoian et al., Atherosclerosis 2011


Effects of NAFLD on Cardiac Structure and Function

Increased mediastinal fat and left ventricular energy metabolism in NAFLD

- Young non-diabetic men with hepatic steatosis and matched controls without steatosis
 - Intra- and extra-pericardial mediastinal fat content
 - Left ventricular morphology
 - Left ventricular systolic and diastolic function
 - Resting LV energy metabolism

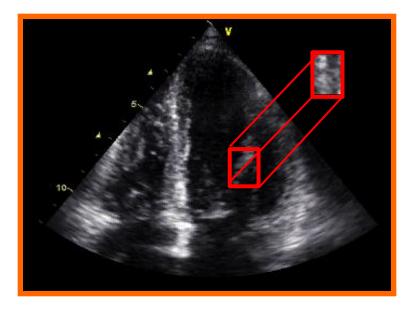
Increased mediastinal fat and left ventricular energy metabolism in NAFLD

- Non-obese, no HTN young men with/without NAFLD
- Normal cardiac morphology and function
 - At rest NAFLD patients have impaired LV ATP reserve
- Men with fatty livers have more intrapericardial and extrapericardial fat

Perseghin et al., Hepatology 2008

Impaired LV function in NAFLD

- Tissue doppler imaging for LV systolic and diastolic function in 35 patients with NAFLD (no DM or HTN)
- 30 healthy controls
- Diagnosis of NAFLD made by ultrasound standard criteria


Echo data in NAFLD vs. Controls

Parameters		NAFLD-patients (n = 35)	Contr	ols (n = 30)	Р
IVS [cm]		0.98 ± 0.08	0.7	79±0.07	< 0.001
PW [cm]		0.93 ± 0.09	0.7	75±0.07	< 0.001
LVESD [cm]		3.19±0.34	3.1	18±0.23	0.913
LVEDD [cm]		4.87 ± 0.48	4.7	76±0.25	0.243
EF (%)		63.40±4.16	62.4	47 ± 4.31	0.379
LVM [g]		169.83±39.81	114.7	77±16.43	< 0.001
LVMI [g/m ³]		82.06±16.88	59.1	17±8.75	< 0.001
LA [cm]	-	2 68 ± 0.20	21	3±0.34	0.113
S' [cm/s]		Too small of a study to dete	ermine	5±1.5	0.004
NAFLD — non-alkoholic fatty ventricular end-systolic diam ventricular mass index; LA —	eter; LVE	if these effects were indep of other differences betwe		or wall diastolic thic M — left ventricular graphy	kness; LVESD — left mass; LVMI — left
rameters	N/	groups i.e. BMI, HTN, IR		= 30)	Р
[cm/s]		71.1±11.2	74.9±1	3.5	0.363
[cm/s]		58.2±9.2	54.3±9	.1	0.279
[ms]		192.8±33.4	166.7±3	4.2	< 0.001
RT [ms]		107.3±12.1	94.8±1	2.6	< 0.001
A ratio		1.25±0.28	1.42±0	.34	0.028
[cm/s]		11.1±2.1	15.3±2	.7	< 0.001
E' ratio		6.64 ± 1.39	4.91±0	91	< 0.001

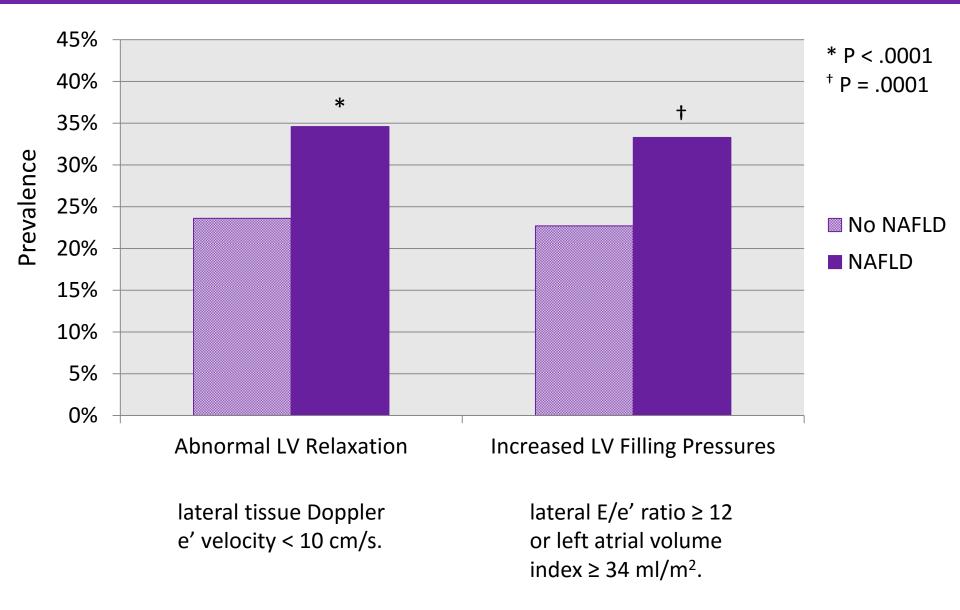
NAFLD — non-alkoholic fatty liver disease; E — early diastolic filling velocity; A — late diastolic filling velocity; DT — deceleration time; IVRT — isovolumic relaxation time; E' — early diastolic velocity on tissue Doppler echocardiography

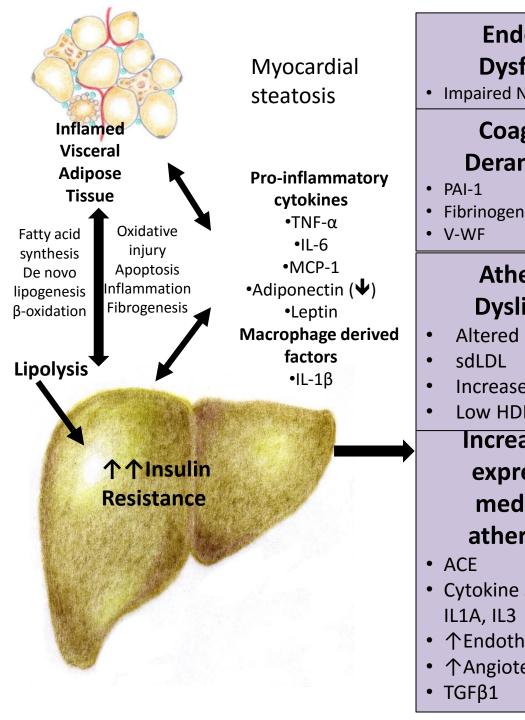
Fotbolcu et al., Cardiology J 2010

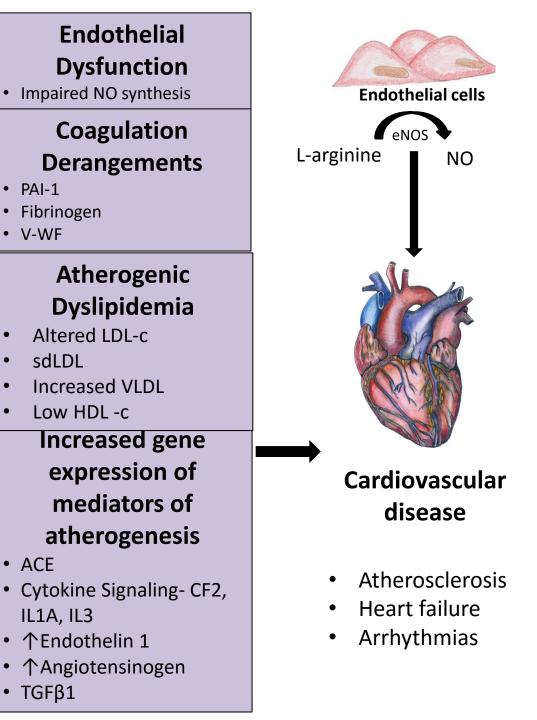
Echocardiographic Speckle (tissue) tracking

- Myocardial strain : Analysis of cardiac motion in regions of interest (% change)
- Global longitudinal strain:
 - Reflects sub-endocardial function
 - Most susceptible to injury

Adjusted odds ratios for the association of NAFLD with severely impaired global longitudinal strain*


	OR	95% CI	P value
Base model	3.4	2.1-5.5	< .0001
Base + HF risk factors	2.0	1.2-3.2	<.0001
Base + BMI	2.3	1.4-3.7	<.001
Base + VAT	1.8	1.1-3.0	.03


Base Model: age, race, sex, center, alcohol, smoking and physical activity


HF risk factors: systolic BP, anti-HTN & anti-hyperlipidemic medication use, total cholesterol, HDL cholesterol, diabetes status, GFR

Van Wagner et al. Hepatology 2015

Markers of subclinical diastolic dysfunction in NAFLD participants compared to non-NAFLD

Conclusions

- Association between NAFLD (NASH) and CVD events and mortality is robust
- Emerging association with impaired cardiac function and arrhythmias
- Plausible MoA link NAFLD (NASH) to CVD
- Independent contribution of NAFLD to development and progression of CVD is compelling
- Good practice to incorporate CVD risk reduction strategies in patients with NAFLD as part of a multidisciplinary approach

Thank you