

Session II: Focus on Biomarkers

FDA- Biomarker Qualification in drug development under IND or NDA/BLA

Presenter: Shashi Amur, Ph.D. U.S. Food and Drug Administration

CENTER FOR DRUG EVALUATION & RESEARCH

FDA'S BIOMARKER QUALIFICATION PROGRAM

Shashi Amur, Ph.D.

Scientific Lead, Biomarker Qualification Program, Office of Translational Sciences, Center for Drug Evaluation and Research, FDA

- Biomarkers
- Integration of Biomarkers in Drug Development
- Drug Development Tool Qualification
 - **o** Biomarker Qualification
- Summary

"Biomarker," or "biological marker," generally refers to a measurable indicator of some biological state or condition

A defined characteristic that is measured as an indicator of normal biological processes, pathogenic processes, or responses to an exposure or intervention, including therapeutic interventions.

Types: Molecular, histologic, radiographic, or physiologic characteristics are types of biomarkers.

Examples:

- Blood glucose (molecular)
- Biopsy-proven acute rejection (histologic)
- Tumor size (radiographic)
- Blood pressure (physiologic)

BEST: <u>BIOMARKERS</u>, <u>ENDPOINTS</u>, AND OTHER <u>T</u>OOLS RESOURCE

- A glossary of terminology and uses of biomarkers and endpoints in basic biomedical research, medical product development, and clinical care
- Created by the NIH-FDA Biomarker Working Group
- Publicly available at <u>http://www.ncbi.nlm.nih.gov/books/NBK326791/</u>

FDA

BIOMARKER CATEGORIES

KEY CONTRIBUTORS TO DRUG DEVELOPMENT PROJECT SUCCESS

Right target

- Strong link between target and disease
- Differentiated efficacy
- Available and predictive biomarkers

Right tissue

- Adequate bioavailability and tissue exposure
- Definition of PD biomarkers
- Clear understanding of preclinical and clinical PK/PD
- Understanding of drug–drug interactions

Right safety

- Differentiated and clear safety margins
- Understanding of secondary pharmacology risk
- Understanding of reactive metabolites, genotoxicity, drug-drug interactions
- Understanding of target liability

Right patients

- Identification of the most responsive patient population
- Definition of risk-benefit for given population

Right commercial potential

- Differentiated value proposition versus future standard of care
- Focus on market access, payer and provider
- Personalized health-care strategy, including diagnostic and biomarkers

www.fda.gov

Biomarkers

Cook et al., Nature Reviews Drug Discovery 13:2419-431 (2014)

BIOMARKER INTEGRATION INTO DRUG DEVELOPMENT

DRUG APPROVAL (IND/NDA/BLA) APPROACH FOR BIOMARKER DEVELOPMENT

Drug Approval Process

Strengths

- Generally, biomarker use has a well-defined purpose
- Data (clinical trial information) available to the biomarker developer
- Opportunities to bring in outside experts
- Company retains marketing advantage

Limitations

- Biomarker use may not be generalizable
- Limited opportunities for additional data sources
- Company responsible for development costs
- Limited opportunities for engagement with outside stakeholder groups
- Biomarker information in drug labels and reviews are available only upon drug approval

www.fda.gov

Reference:

SCIENTIFIC COMMUNITY CONSENSUS APPROACH FOR BIOMARKER DEVELOPMENT

<u>Strengths</u>

- Extensive knowledge base of exploratory biomarker data in published literature
- Opportunity for broad and multiple community inputs

Scientific Community Consensus

Reference:

Limitations

- Published data may not be not reproducible
- Time to regulatory acceptance
- Variability of study designs, populations, and analytics
- Applicability to regulatory paradigms

www.fda.gov

Facilitating Biomarker Development: Strategies for Scientific Communication, Pathway Prioritization, Data-Sharing, and Stakeholder Collaboration; Published June 2016, Duke-Margolis Center for Health Policy

ESTABLISHMENT OF ALT AS AN ACCEPTED BIOMARKER FOR REGULATORY USE

www.fda.gov

BIOMARKER QUALIFICATION APPROACH FOR BIOMARKER DEVELOPMENT

Strengths

- Biomarker use generalizable
- Opportunity to pool resources , share costs and bring outside experts
- Systematic biomarker development
- Leverage outside stakeholder groups
- Outcome is a public guidance with supporting reviews

Limitations

- If part of a group effort, stakeholders may have differing goals, level of commitment, and engagement
- Data (clinical trial information) may not be readily available
- Data sharing and aggregation may be challenging

www.fda.gov

Biomarker Qualification Program

<u>Validation</u> – Establishing that the performance of a (biomarker) test, tool, or instrument is acceptable for its intended purpose

Analytical validation: Establishing that the performance characteristics (including sensitivity, specificity, accuracy, and precision) of a test, tool, or instrument are acceptable.

Clinical validation: Establishing that the test, tool, or instrument acceptably identifies, measures, or predicts the concept of interest.

• <u>Concep</u>t: In a regulatory context, the concept is the aspect of an individual's clinical, biological, physical, or functional state, or experience that the assessment is intended to capture (or reflect).

BEST Glossary: <u>http://www.ncbi.nlm.nih.gov/books/NBK326791/</u>

DRUG DEVELOPMENT TOOLS (DDT) QUALIFICATION AT CDER/FDA

Clinical Outcome Assessments Animal Models (Animal Rule) **Biomarkers**

DDTs are methods, materials, or measures that aid drug development

DDT QUALIFICATION AT CDER, FDA

Guidance for Industry and FDA Staff: Qualification Process for Drug Development Tools

http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/ Guidances/UCM230597.pdf

Drug Development Tools (DDT) Qualification Programs Webpage on FDA.gov

http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DrugDevelopmentToolsQualific ationProgram/default.htm

BIOMARKER QUALIFICATION (BQ)

Definition: A conclusion that, within a carefully and specifically stated "context of use," the biomarker has been demonstrated to reliably support a specified manner of interpretation and application in drug development

<u>Context of Use (COU)</u>: A comprehensive statement that fully and clearly describes the manner and purpose of use for the biomarker in drug development

BIOMARKER QUALIFICATION: SUBMITTER ROADMAP

Stage 1: Initiation

Submit Letter of Intent (LOI)

FDA determines acceptability of LOI Stage 2: Consultation and Advice

Submit briefing package

Collaborative discussion with FDA regarding the biomarker development plan Stage 3: Review

Submit full qualification package

FDA reviews package and makes yes/no decision to qualify

> FDA drafts guidance document

Publication of Guidance

Draft guidance document posted to Federal Register for public comment

> FDA publishes final guidance document

LIST OF FDA-QUALIFIED BIOMARKERS

General Area	Submitter(s)	Biomarker(s) Qualified for Specific Contexts of Use	Issuance Date with Link to Specific Guidance	Supporting Information
Nonclinical	Predictive Safety and Testing Consortium (PSTC), Nephrotoxicity Working Group (NWG)	Urinary biomarkers: Albumin, β2- Microglobulin, Clusterin, Cystatin C, KIM-1, Total Protein, and Trefoil Factor-3	<u>4/14/2008: Drug-Induced Nephrotoxicity</u> <u>Biomarkers</u>	<u>Reviews</u>
Nonclinical	International Life Sciences Institute (ILSI)/Health and Environmental Sciences Institute (HESI), Nephrotoxicity Working Group	Urinary biomarkers: Clusterin, Renal Papillary Antigen (RPA-1)	<u>9/22/2010: Drug-Induced Nephrotoxicity</u> <u>Biomarkers</u>	<u>Reviews</u>
Nonclinical	PJ O'Brien, WJ Reagan, MJ York, and MC Jacobsen	Serum/plasma biomarkers: Cardiac Troponins T (cTnT) and I (cTnI)	2/23/2012: Drug-Induced Cardiotoxicity Biomarkers	<u>Reviews</u>
Clinical	Mycoses Study Group	Serum/bronchoalveolar lavage fluid biomarker: Galactomannan	<u>10/24/2014: Patient Selection Biomarker</u> for Enrollment in Invasive Aspergillosis (IA) Clinical Trials	<u>Reviews</u>
Clinical	Chronic Obstructive Pulmonary Disease (COPD) Biomarker Qualification Consortium (CBQC)	Plasma biomarker: Fibrinogen	7/6/2015; Prognostic Biomarker for Enrichment of Clinical Trials in Chronic Obstruction Pulmonary Disease (COPD)	<u>Reviews</u>
Clinical	Polycystic Kidney Disease Outcomes Consortium	Imaging biomarker: Total Kidney Volume (TKV)	8/17/2015: Prognostic Biomarker for Enrichment of Clinical Trials in Autosomal Dominant Polycystic Kidney Disease	<u>Reviews</u>

www.fda.gov/biomarkerqualificationprogram

STAKEHOLDERS IN BIOMARKER DEVELOPMENT

OPPORTUNITIES FOR ENGAGING FDA IN BIOMARKER DEVELOPMENT

FDA

Summary

- **BEST** (Biomarkers, Endpoints, and other Tools Resource) provides biomarkerrelevant definitions, in an effort to harmonize biomarker terminology
- Biomarkers don't have to be qualified to be used in drug development and the drug approval pathway remains a valuable path for integration of biomarkers in drug development

Biomarker Qualification

- Submitter can be a person, a group, organization (including the federal government), or consortium that takes responsibility for and initiates a BQ proposal using the procedures described in the DDT guidance
- No fees for submissions to the BQ program
- Biomarker qualification is voluntary
- Once qualified, it can be used in any drug development program under the context for which it obtained qualification.
- New FDA initiatives, such as LOS and limited COU qualification, can be utilized as early goal posts in biomarker development

Janet Woodcock ShaAvhrée Buckman-Garner Suzie McCune Chris Leptak Marianne Noone Sarmistha Sanyal Kylie Haskins Ru Chen

BIOMARKER QUALIFICATION (BQ) SUBMISSIONS

Biomarker Qualification Program Metrics

	Number in Initiation Stage	4		
	Number in Consultation and Advice Stage	19		
	Number in Review Stage	4		
	Total Number of Active Projects	27		
	Number Qualified	6		
From	rom the Drug Development Tool (DDT) Qualification Projects at CDER, FDA			

http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DrugDevelopmentToolsQualification Program/ucm409960.htm

TYPES OF SUBMISSIONS WE ARE SEEING FOR BIOMARKER QUALIFICATION

SOME ENABLERS FOR BIOMARKER DEVELOPMENT

- Data standards
- Data quality
- Data reproducibility
- Statistical considerations
- Assay/imaging considerations/validation
- Assay/imaging protocols
- Establishing cut points