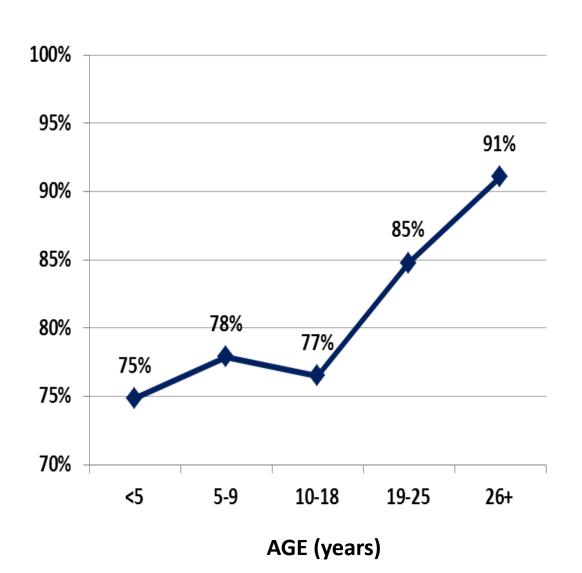
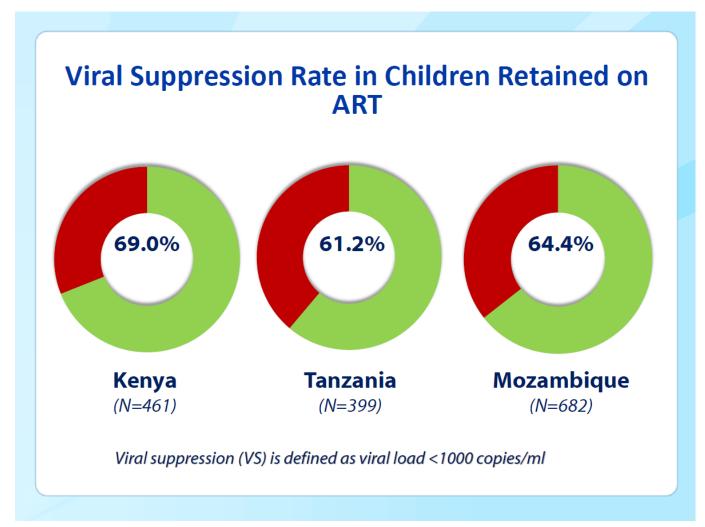
High Rates of HIVDR Complicate ART Choices for Children and Adolescents


George K Siberry, MD, MPH
Senior Pediatric Technical Advisor
Office of the U.S. Global AIDS Coordinator
April 2016

Outline


- Epidemiology of virologic failure with drug resistance in children
- Unique factors in children that contribute to drug resistance
- Available and upcoming treatment options for children
 - Reduce drug resistance
 - Active in the face of drug resistance

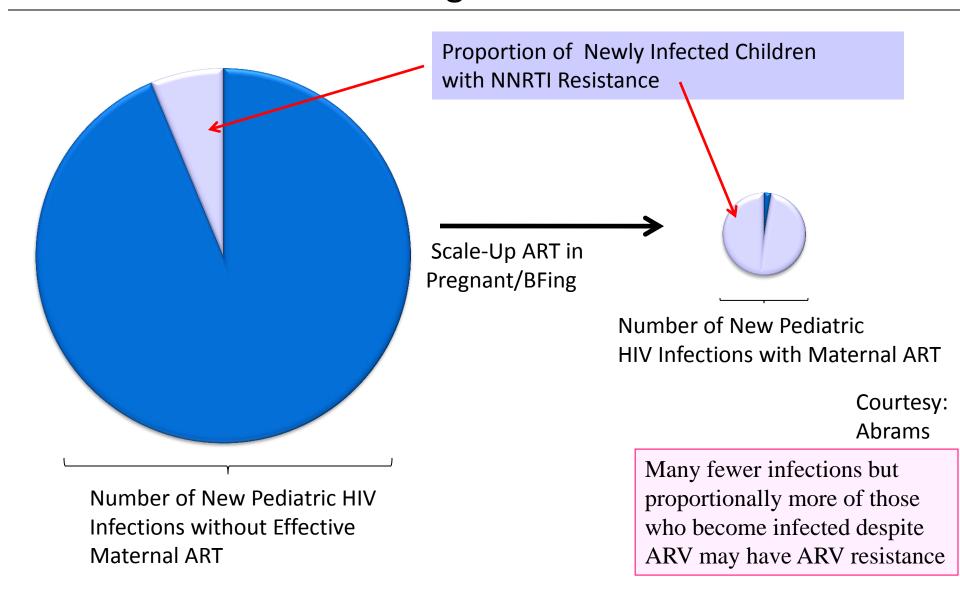
Uganda VL Suppression Rates by Age

(data from Uganda MOH, Dec 2015)

Virologic Suppression Among Children (<15 yrs old) on ART ≥6 months – Viral Load Scale-up in 3 Countries

Failure rates of 31-39%

RED: VL≥1000 copies/mL


Drug Resistance (HIVDR) in Children with Virologic Failure

HIVDR Prevalence Among Children Failing Treatment

Group	N	VF (n)	Genotyped (n)	HIVDR (n)	HIVDR %	95% C.I.
Kenya	461	143	136	121	89.0%	76.7%-95.2%
Tanzania	399	155	141	122	86.5%	78.4%-91.9%
Mozambique	682	243	232	222	<u>95.7%</u>	92.3%-97.6%

Conclusion: Most children failed treatment due to HIVDR

Increasing Use of ART for Pregnant & Breastfeeding Women: Impact on New Infant Infection Incidence and Drug Resistance

Drug resistance in newly diagnosed children (<2 yrs old), **2011** South Africa Kuhn AIDS2014

 Of 230 children tested, 155 (67%) ARV-exposed via PMTCT (Maternal and/or Infant)

DR Class	ARV Exposed (155; 67%)	ARV Unexposed (75; 33%)	Most common DRM
NNRTI	57%	24%	181C >> 103N>190A
NRTI	15%	11%	184V, 69N, 74V
PI	<2%	<2%	46I/L/T

- 181C with NVP exposure more common in children (103N in adults) – less deleterious impact on EFV activity
 - High-level NVP DR in 54% PMTCT exposed; 17%PMTCT unexposed
 - High-level EFV DR in 22% PMTCT exposed; 7% unexposed
- Delayed diagnosis compromises DR testing utility
 - NNRTI DRM detected in 86% tested <= 8 wks old, 57% tested <= 17-26 wks old. <25% tested beyond 1 yr old

Virological outcome and DR prevalence stratified by regimen type for children (<15 yrs old)

CDC, Program Data – Viral Load Scale-up

Country	Regimens	N	Virologic outcome		HIVDR	
Country			VS	VF	no DR	DR
Kenya	NVP-containing	287 (62%)	59.6%	40.4% ¹	65.5%	34.5% ²
	EFV-containing	133 (29%)	86.5%	13.5%	87.9%	12.1%
	Other	41 (9%)	78.0%	22.0%	80.5%	19.5%
Tanzania	NVP-containing	269 (67%)	58.0%	42.0% ³	65.1%	34.9%4
	EFV-containing	122 (31%)	70.5%	29.5%	77.3%	22.7%
	Other	8 (2%)	25.0%	75.0%	37.5%	62.5%
Mozambique	NVP-containing	615 (90%)	64.9%	35.1%	67.5%	32.5%
	Other/missing	67 (10%)	59.7%	40.3%	61.5%	38.5%

Compared to EFV-containing regimens, P < 0.001, OR = 4.33 (95% C.I. 2.50-7.51);

Compared to EFV-containing regimens, P<0.001, $\overline{OR=3.82}$ (95% C.I. 2.14-6.81);

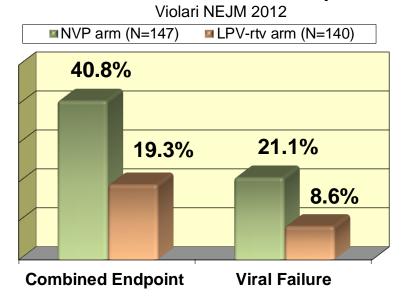
Compared to EFV-containing regimens, P = 0.02, OR = 1.73 (95% C.I. 1.09-2.74);

Compared to EFV-containing regimens, P = 0.02, $\overline{OR = 1.83}$ (95% C.I. 1.11-3.01).

Emergence of Drug Resistance During Breastfeeding

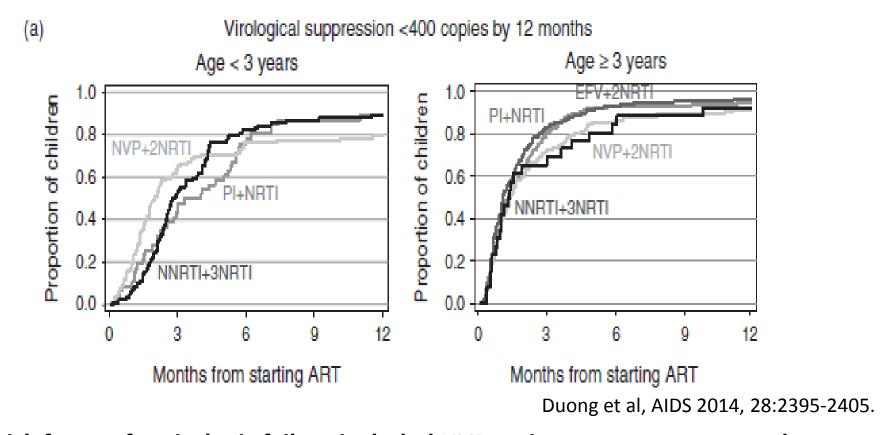
Inzaule JAC 2016; Fogel CID 2011; Zeh PlosMed 2011

- □ KiBS (Kisumu BFing Study): maternal NVP or NFV with ZDV-3TC from 34 wks through 6-mos* breastfeeding
 - Only 6.4% infected but 16/24 (67%) with DRM detected by age 6 mos
 - Only 4/18 (22%) DRM detected at time point of first positive PCR
 - Mutations detected at first emergence of DRM
 - 184V (12 8 only); **65R** (4); 181C (4); 190A (2); 103N (2)
- □ PEPI-Malawi subset: women started d4T-3TC-NVP** postpartum
 - Of 37 infants infected during BFing (with post maternal ART GT available), 81% with NNRTI DRM and (11) 30% with multi-class
 DRM with most common NRTI mutations being 184V (7) & 65R (6).


^{*}ART continued/restarted if extant ART indications met.

^{**}Infants also rec'd NVP prophylaxis

P1060: Comparing NVP to LPVr in Infants/Young Children

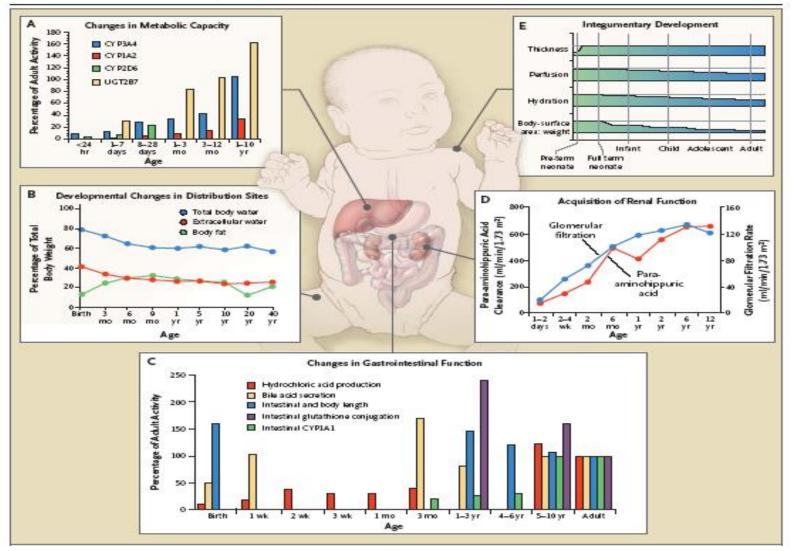

Cohort 2: No NVP Exposure

Combined endpoint= Viral Failure, Off Study Drug, or Death

- Similar rates of overall failure (combined endpoint) & viral failure in NVP-exposed AND NVP-unexposed cohorts.
- Past (known) NNRTI exposure does not fully explain risk of NVP failure in children <3 years old

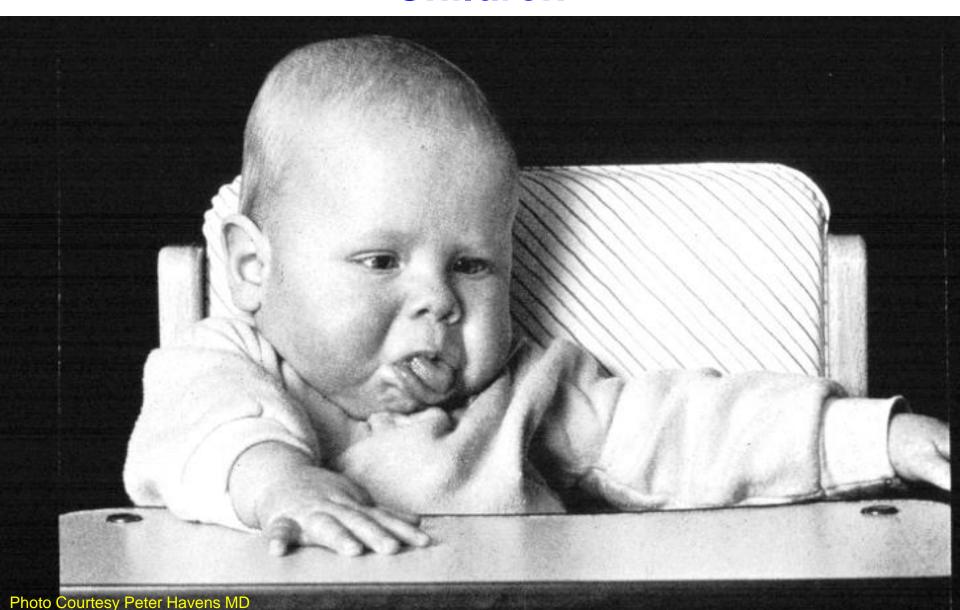
Longer time to virologic suppression in younger children

Risk factors for virologic failure included <u>NVP regimen</u>, <u>younger age</u>, <u>and</u>
 <u>higher VL</u>. NOTE: Young children – especially infants – have higher baseline
 VL than older children and adults


Usual Lead-in NVP Dosing Produces Inadequate Exposure at Week 2

Fillekes CHAPAS AIDS 2013

	Children <2 years (n = 45)	Children >2 years (n = 117)	P
Nevirapine plasma concentration (mg/l)			
Full-dose group (n = 83)	5.3 (4.2-9.0)	10.0 (7.9-12.2)	0.001
Dose-escalation group $(n = 79)$	4.8 (2.9-6.4)	5.0 (3.9-6.6)	0.41
P value comparing full-dose versus dose-escalation	0.14	< 0.001	*
Subtherapeutic nevirapine concentrations, n (%)			
Full-dose group $(n = 83)$	3 out of 23 (13%)	4 out of 60 (7%)	0.39
Dose-escalation group $(n = 79)$	7 out of 22 (32%)	7 out of 57 (12%)	0.05
P value comparing full-dose versus dose-escalation	0.16	0.35	**


- Children <2yrs old have lower exposure with full dose
- Almost 1/3 of children <2 yrs old have subtherapeutic NVP levels when lead-in dose used

Developmental Changes in Physiologic Factors Influencing Drug Disposition in Pediatrics

Kearns GL et.al. NEJM 2003;349:1157-67

Difficulties with ARV Administration to Children

Many Drugs Cannot Be Used in Children < 2-3 Years Old

NRTIs	Abacavir (ABC)	≥ 3 months		
	Didanosine (ddl)	≥ 2 weeks Birth and up >3 months		
	Emtricitabine (FTC)			
	Lamivudine (3TC)			
	Stavudine (d4T)	Birth and up		
	Tenofovir (TDF)	≥ 2 years		
	Tenofovir (TAF)	≥ 12 years		
	Zidovudine (ZDV)	Premature infants and up		
NNRTIs	Efavirenz (EFV)	≥ 3 months/≥ 3.5 kg- unreliable PK		
	Etravirine (ETR)	≥ 6 years, at least 16 kg		
	Nevirapine (NVP)	≥ 15 days		
	Rilpivirine (RPV)	≥ 12 years		
Pls	Atazanavir (ATV)	≥ 3 mos/5 kg		
	Darunavir (DRV)	≥ 3 years, ≥ 10 kg - warning against use <3 yrs old		
	Fosamprenavir (FPV)	≥ 2 years		
	Indinavir (IDV)	> 18 years		
	Lopinavir/ritonavir (LPV/r)	≥ 14 days		
	Nelfinavir (NFV)	≥ 2 years		
	Ritonavir (RTV)	≥ 14 days		
	Saquinavir (SQV)	> 16 years		
	Tipranavir (TPV)	≥ 2 years (with ritonavir)		
Entry/Fusion	Enfuvirtide (T-20)	≥ 6 years		
inhibitors	Maraviroc (MVC)	≥ 16 years		
Integrase	Raltegravir (RAL)	≥ 4 weeks		
inhibitors	Dolutegravir (DTG)	≥ 12 years		
	Elvitegravir (in some coforms)	≥ 12 years		

WHO 2015 Guidelines

PREFERRED AND ALTERNATIVE FIRST-LINE ART REGIMENS					
First-line ART	Preferred first-line regimen	Alternative first-line regimens ^{1,2}			
Adults	TDF + 3TC (or FTC) + EFV	AZT + 3TC + EFV (or NVP) TDF + 3TC (or FTC) + DTG ^{3,4} TDF + 3TC (or FTC) + EFV ₄₀₀ ^{3,4,5} TDF + 3TC (or FTC) + NVP			
Pregnant/breastfeeding women	TDF + 3TC (or FTC) + EFV	AZT + 3TC + EFV (or NVP) TDF + 3TC (or FTC) + NVP			
Adolescents	TDF + 3TC (or FTC) + EFV	AZT + 3TC + EFV (or NVP) TDF (or ABC) + 3TC (or FTC) + DTG ^{3,4} TDF (or ABC) + 3TC (or FTC) + EFV ₄₀₀ ^{3,4,5} TDF (or ABC) + 3TC (or FTC) + NVP			
Children 3 years to less than 10 years	ABC + 3TC + EFV	ABC + 3TC + NVP AZT + 3TC + EFV (or NVP) TDF + 3TC (or FTC) + EFV (or NVP)			
Children less than 3 years	ABC (or AZT) + 3TC + LPV/r	ABC (or AZT) + 3TC + NVP			

- In many countries, NVP still first-line instead of EFV (3 < 10 yo) or LPVr (<3yo)
- ZDV rather than ABC in children remains common(< 10 years old)

WHO 2015 3rd Line Recommendations

POPULATION	1st LINE REGIMEN	2ND LINE REGIMENS	3RD LINE REGIMENS	
Adults	2 NRTIs + EFV	2 NRTIs + ATV/r or LPV/r	DDV//d - DTC (or DAI) - 1 2 NDTIs	
		2 NRTIs + DRV/r	$DRV/r^1 + DTG$ (or RAL) $\pm 1-2$ NRTIs	
	2 NRTIs + DTG	2 NRTIs + ATV/r or LPV/r	DRV/r + 2 NRTIs ± NNRTI	
			Optimize regimen using genotype profile	
Pregnant/breastfeeding	2 NRTIs + EFV	2 NRTIs + ATV/r or LPV/r	DRV/r + DTG (or RAL) ± 1–2 NRTIs	
women		2 NRTIs + DRV/r		
Children	2 NRTIs + LPV/r	If less than 3 years: 2 NRTIs + RAL ²		
Many still on NVP as 1 st line		If older than 3 years: 2 NRTIs + EFV or RAL	DTG ⁴ + 2 NRTIs DRV/r ³ + 2 NRTIs DRV/r ³ + DTG ⁴ ± 1–2 NRTIs	
	2 NRTIs + EFV	2 NRTIs + ATV/r5 or LPV/r	211111111111111111111111111111111111111	

- Second-line similar for older children who started on EFV
- If LPVr first-line failure, EFV or RAL as second line
- Typically, NRTI sequence in children is ZDV -> TDF (if old enough). Where ABC used first line, ABC -> ZDV or TDF
- Third-line options very limited for young children, in whom DTG (<12yrs) or DRV (<3 yrs)
 cannot be used

Antiretroviral Drug Resistance Profiles and Response to Second-Line Therapy Among HIV Type 1-Infected Ugandan Children

ARHR 2013;29(3):449

Victor Musiime, Elizabeth Kaudha, Joshua Kayiwa, Grace Mirembe, Matthew Odera, Hilda Kizito, Immaculate Nankya, Francis Ssali, Cissy Kityo, Robert Colebunders, and Peter Mugyenyi

- 142 children failing first-line NNRTI-based ART (58% NVP; 36% EFV).
 - Mean age: 10.9 yrs. Mean 5.9yrs on ART.
- Resistance
 - NRTI: 184V, 91%. TAMs, 43%. ≥3TAMs, 11%.
 - NNRTI: 103N, 51%. 109A/S, 32%. 181C, 23%. ≥1, 98%.
- LPVr+2-3 NRTIs
 - VL<400: 80%, wk 24; 85%, wk 48.

DR in Children Failing PI-Based ART

Meyers PIDJ 2015

- Virologic failure (confirmed VL >1000) in 152/1203 (12.6%) South African children started on first-line LPVr-based ART at age < 3 years
- Of 75 with GT testing
 - 8 (10.7%) with sig. LPVr DRM*
 - Of 63 (84%) who remained on LPVr, 32
 (51%)suppressed incl/ 2 with sig. LPVr mutations.
 - Of 12 who switched to EFV, 4 (33%) suppressed.

Sig. LPVr DRM: L10F, L24I, V32I, L33F, M46IL, I47A, I50V, I54MLV, L76V, V82ATSFMC, I84V, L89V and L90M

Pharmacokinetics, Safety, and 48-Week Efficacy of Oral Raltegravir in HIV-1-Infected Children Aged 2 Through 18 Years CID 2014;58(3):413-22

Sharon Nachman,¹ Nan Zheng,² Edward P. Acosta,³ Hedy Teppler,⁴ Brenda Homony,⁴ Bobbie Graham,⁵ Terence Fenton,² Xia Xu,⁴ Larissa Wenning,⁴ Stephen A. Spector,⁶ Lisa M. Frenkel,⁷ Carmelita Alvero,² Carol Worrell,⁸ Edward Handelsman,^{9,a} and Andrew Wiznia¹⁰; for the International Maternal Pediatric Adolescent AIDS Clinical Trials (IMPAACT) P1066 Study Team

- 96 children, all but 1 (99%) with prior ARV use
 - Mean duration prior ART use 5 years (less in younger cohorts)
 - 95% with prior use of 2+ classes
 - 78% with prior NNRTI use; 83% with prior PI use
- 79% VL<400 at week 48 of RAL-based ART
 - Concomitant PI in 81% (LPVr, 41%; DRVr, 40%).
 - EFV, 14%. ETR, 22%.
- 87.5% VL<400 by week 48 for 4mo-2yo cohorts (Nachman JPIDS 2015)

Changing Regimens in Context of **Successful**Treatment

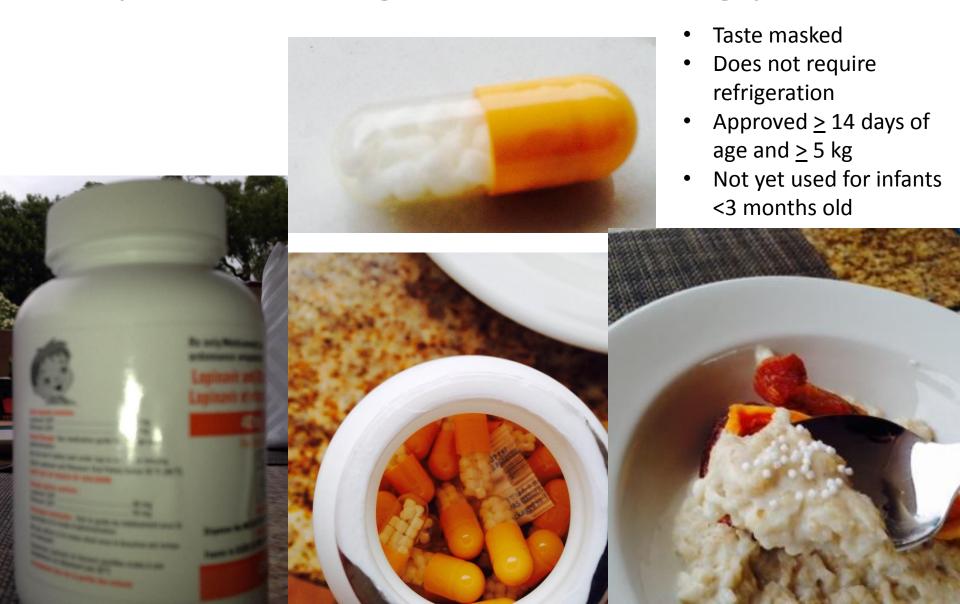
Original Investigation

Efavirenz-Based Antiretroviral Therapy Among Nevirapine-Exposed HIV-Infected Children in South Africa A Randomized Clinical Trial

JAMA. 2015 Nov 3;314(17):1808-17

Ashraf Coovadia, MBChB; Elaine J. Abrams, MD; Renate Strehlau, MBChB; Stephanie Shiau, MPH; Francoise Pinillos, MBChB; Leigh Martens, MBChB; Faeezah Patel, MBChB; Gillian Hunt, PhD; Wei-Yann Tsai, PhD; Louise Kuhn, PhD

- HIV-infected children exposed to NVP for PMTCT who were ≥ 3 years old and had VL< 50 copies/mL on LPVr—based ART
- Randomly assigned to switch to EFV-based therapy (n = 150) or continue LPVr-based therapy (n = 148).
- Endpoint: Viral failure = confirmed VL >1000 copies/mL
- Result: Risk of viral failure was 2.7% in EFV group vs 2.0% in LPVr group (NS).
- Conclusion: Switching to EFV, compared with continuing LPVr, did not result in significantly higher rates of viral failure


Improving Treatment Outcomes for Children

- Promote use of recommended first-line
 - Active despite PMTCT ARV exposure
 - Favorable PK and virologic efficacy
- Prioritize children in virologic monitoring scale-up
 - Suppressed: new regimen options
 - Failing: adherence/new regimen before more DR
- Promote development, testing and availability of appropriately formulated drugs for children
 - IMPAACT P1093: DTG ≥ 4wks. Data under review for 6-12 yo. Approved ≥ 12 yo.

DRAFT 2016 IATT Paediatric ARV Optimal Formulary

Drug Class	Drug	Formulation	Dose	10 Products
NNRTI	EFV	Tablet (scored)	200 mg	
NNRTI	NVP	Tablet (disp, scored)	50 mg	
NNRTI	NVP	Oral liquid*	50 mg/5mL, 100ml	<u>Changes</u>
PI	LPV/r	Tablet (heat stable)	100 mg/25mg	 LPV/r oral pellets added
PI	LPV/r	Oral liquid	80 mg/20 mg/mL	
PI	LPV/r	Oral pellets	40mg/10mg	added
FDC	AZI/STC	Tablet (disp. scored)	60 mg/30 mg	 AZT/3TC/NVP moved to
FDC	ABC/3TC	Tablet (disp, scored)	60 mg/30 mg, 120mg/60mg	limited use
INSTI	RAL	Chewable tab	100mg	Courtesy of N. Sugandhi

Lopinavir 40mg/ritonavir 10mg pellets

3rd Line/PI-failure Regimens

- Very limited options for young children (RAL)
 - DRV cannot be used <3 yrs old
 - DTG approved for 12+; promising result for 6- <12 (CROI 2016); under study for <6 yrs old (P1093)
 - ETR approved for 6+; under study for <6 (not on WHO list)
- Most 3rd line depend on innovator (name brand) rather than generic mfg
- Potential value of individual resistance testing
 - Adherence vs Resistance, especially for PI regimens
 - Extensive NRTI resistance more common with prolonged failure
 - Uncertainty about value of including NRTIs based on extrapolation from studies in adults

THANK YOU

Use of Dried-Blood-Spot Samples and In-House Assays To Identify Antiretroviral Drug Resistance in HIV-Infected Children in Resource-Constrained Settings JCM 2011

Carrie Ziemniak, Yohannes Mengistu, Andrea Ruff, Ya-Hui Chen, Leila Khaki, Abubaker Bedri, Birgitte B. Simen, Paul Palumbo, Susan H. Eshleman, and Deborah Persaud.

HIV-1 Drug Resistance and Second-Line Treatment in Children Randomized to Switch at Low Versus Higher RNA Thresholds JAIDS 2015;70:42–53

Linda Harrison, MSc,* Ann Melvin, MD,† Susan Fiscus, PhD,‡ Yacine Saidi, PhD,§ Eleni Nastouli, MD,|| Lynda Harper, MSc,¶ Alexandra Compagnucci, MD,§ Abdel Babiker, PhD,¶ Ross McKinney, MD,# Diana Gibb, MD, MRCP, MSc,¶ and Gareth Tudor-Williams, MD,** and the PENPACT-1 (PENTA 9/PACTG 390) Study Team

- PI (50% LPVr; 49% NFV) vs NNRTI (38% NVP; 62% EFV) with switch (PI->NNRTI; NNRTI->PI) at 1K vs 30K copies/mL in children. Europe, N&S America.
- Greatest risk of new NRTI mutations in NNRTI-30K group. Risk of NRTI DRM low in PI, esp in LPVr (even at 30K).
- Emergence of NNRTI >> PI mutations
- Response to 2nd line (switch): VL < 400 by week 24....
 - PI-> NNRTI: 79% for PI-1K, 63% for PI-30K
 - NNRTI -> PI: 64% for NNRTI-1K, 100% for NNRTI-30K
 - 93% overall if no NRTI DRM