

New Assays for HIVDR:

Implications for Point-of-Care Testing

Lisa M. Frenkel, MD

Professor Pediatrics, Laboratory Medicine, Medicine and Global Health University of Washington and Seattle Children's Hospital email: <u>lfrenkel@uw.edu</u>

Outline

- Point-mutation assays
 - Allele-specific PCR
 - One-step ligation
 - PAANDA
 - Oligonucleotide ligation assay (OLA)
- How do we develop a point of care assay

Allele-specific PCR: Schema

• Developed & implemented at YRG-CARE, Chennai, India

Allele-specific PCR

• Strengths

- Established assay
- Implemented in a resource limited setting
- Detects targeted mutations
- Detects minor variants
- Low cost
- Moderate labor
- No interpretation software/algorithm
- Weaknesses
 - HIV diversity lessens sensitivity
 - Minor frequency variants can be false positives
 - Few codons
 - Requires laboratory; real-time thermocycler ~\$20K
 - Not point-of-care

Allele-specific PCR: Role in clinical care and design for widespread implementation in resource-limited settings

- Operational in Chennai, India
- Using assay optimized for locally circulating HIV variants
- Used for drug resistance surveillance & individual care
- Has advanced training of laboratory personnel and education of local care givers in a resource limited settings

Ligation on RNA Amplification: Schema

Zhang et al. J Mol Diag 2015

Ligation on RNA Amplification

- Strengths
 - Tolerates many polymorphisms around mutation
 - Fewer false positives compared to ASPCR
 - Work directly on RNA
 - Low cost
 - Minimal labor
 - No interpretation software/algorithm
 - Detects minor variants
- Weaknesses
 - In development
 - Improved by optimizing to regional variants
 - Requires laboratory; real-time thermocycler ~\$20K
 - Not point-of-care

Ligation on RNA Amplification:

Role in clinical care and design for widespread implementation in resource-limited settings

• Will likely offer laboratory based assay with improved sensitivity and specificity compared to ASPCR

PANDAA: Schema

PANDAA

• Strengths

- <u>Tolerates many polymorphisms around mutation</u>
- Minimal labor
- Detects minor variants
- Rapid (~90 minutes to result)
- Sensitive to 1% of the virus population; highly specific
- Can provide viral load information ("viral quantifier")
- HIV subtype-independent
- Enables "focused genotyping" (pre-defined codons relevant to a given clinical decision (e.g. first-line failures)
- Relatively inexpensive compared to Sanger
- High throughput

• Weaknesses

- Does not detect DRM linkage
- Few codons
- Requires laboratory; real-time thermocycler ~\$20K
- Not point-of-care

PANDAA in Future Clinical Care

- Plugs in to existing qPCR infrastructure
- Simple ("sample-in, answer-out")
- Lyophilized / thermostable (no cold chain req'd)
- LyoSpheres are customizable DRM detection reagent sets can be swapped in/out depending on need (e.g. change in standardized drug regimens)
- Automated data analysis, customizable readout for different users / audiences (e.g. researchers vs. clinicians vs. lower-level healthcare workers)

- Dependent on existing qPCR infrastructure
- No integrated sample prep

Oligonucleotide Ligation Assay (OLA)

AP

POD

- Specimen Blood cells, plasma, whole blood or filter papers
- Steps PCR or RT-PCR, ligation of discriminatory probes & EIA

OLA

- Strengths
 - Highly sensitive, detects \geq 2% mutant frequency
 - Highly specific, ~100% due to ligase requirements
 - Quantifies mutant frequencies
 - Minimal equipment (simple thermocycler; ~\$3K)
- Weaknesses
 - Requires technical skill
 - Low-cost only if batch test specimens
 - Turn-around-time ~8 hours
 - Not point-of-care

OLA detected high prevalence of DR among 838 ARV-naïve Kenyan adults qualifying for ART in 2013-2014

Pre-ART OLA & 12-month Virologic Outcome

- 988 enrolled & randomized to pre-ART OLA vs. standard-of-care (SOC)
- OLA codons: K103N, Y181C, M184V & G190A
- If OLA ≥10% mutant Rx Lopinavir/rt-ART; otherwise SOC NNRTI-ART
- 803 with plasma HIV RNA after 12-months ART
- Intent-to-treat OLA vs. SOC arms: 34 (8.5%) vs. 39* (9.7%); P= 0.562; underpowered

Virologic failure (VF) at 1-year of ART by study arm & frequency of resistance at enrollment

	OLA (n=400)		SOC (n=403)		Chi ² p-value
OLA results	#Tested	# (%) VF	# Tested	# (%) VF	
Wild-type	351	26 (7.4%)	363	22 (6.1%)	0.472
2-9%	13	3 (23.1%)	14	5 (35.7%)	0.472
$\geq_{10\%}$	36	5 (13.9%)	26	12* (46.2%)	0.005

VF at 1-year of NVP- vs. EFV-ART by frequency of resistance at enrollment

	Nevirapine-based-ART		Efavirenz-based-ART		
% mutant	# subjects	# (%) VF	# subjects	# (%) VF	p-value
Wild-type	252	27 (10.7%)	453	20 (4.2%)	0.001
2-9%	8	5 (62.5%)	19	3 (15.8%)	0.015
≥10%	10	6 (60.0%)	21	6 (28.6%)	0.093

POINT: PDR affects VS, even low-frequency

Point-of-Care assay

• Priorities

- Detect DR to 1st-line-ART
- Detects low-frequency variants
- Rapid turn-around-time
- Economical
- Minimal technical training
- Remaining Challenges
 - Input of >300+ viral templates to detect minor variants
 - Rapid nucleic acid extraction
 - Rapid amplification and prevention of amplicon carry-over
 - Reagent stability
 - Need assay to test antiretroviral drugs for each ART combination

Ongoing conversion of OLA to Point-of-Care assay

- Rapid method (i.e., stimuli-responsive regents) to capture adequate amount of nucleic acids
- Isothermal amplification
- Same-pot ligation
- Paper detection
- NEED to know next version of WHO 1st-line-ART

Seattle

Ingrid Beck Sherry McLaughlin Ross Milne Sheila Strychak Molly Levine Hannah Huang Daisy Ko

Barry Lutz

Nuttada Panpradist Ian Andrews Nikki Higa Annie Wong-On-Wing David McIntyre

James Lai

Betty

Michael Chung James Munyao Samah Sakr James Kiarie

Robert Coombs

THANKS to:

Rami Kantor et al. (Brown)

Iain MacLeod et al. (Harvard)

Seattle Children's

HOSPITAL · RESEARCH · FOUNDATION

UW Medicine SCHOOL OF MEDICINE

Thank you! Question<u>s</u>?

