

Dried Blood Spots and Other Sample Types for HIVDR Testing

DEBORAH PERSAUD, MD

PROFESSOR OF PEDIATRICS

JOHNS HOPKINS UNIVERSITY SCHOOL OF MEDICINE

& BLOOMBERG SCHOOL OF PUBLIC HEALTH

Focus

SESSION ORGANIZER

Practical

Operational

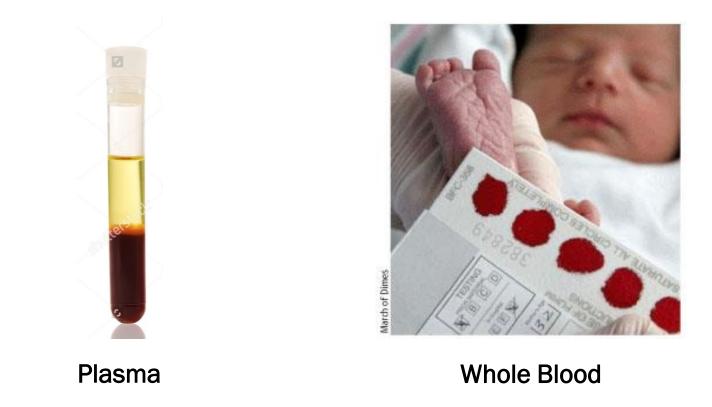
Policy

PROGRAM ORGANIZERS

Lessons from pMTCT

Seeding of HIV reservoirs with resistant virus

Next generation sequencing methods


Practical

TOPIC 1

Sample Types: Practicality

Liquid

Dried Blood Spots (Advantages)

Easy to collect

Easy to store

No pre-processing

RNA and DNA preserved for years with proper storage

Affords analysis on small blood volumes (50-250µL)

Cold chain not necessary for short-term storage (<2 weeks)

Noninfectious after drying

Easily shipped-nonhazardous material by regular mail or courier services

Dried Blood Spots (Disadvantages)

Reduced Sensitivity (12x-lower)

Limited by blood volume (50-75 μL per spot); generally no more than 2 spots to maximize efficiency and minimize interfering substances

Nucleic acid degradation under poor storage conditions

Specificity

contribution of cell-associated nucleic acid DNA and RNA at lower viral loads

Accuracy

Concordance with plasma results

Operational

TOPIC 2

WHO/HIVResNet Global HIVDR Prevention and Assessment Strategy

Dried blood spots for HIV-1 Drug Resistance and Viral Load Testing: A Review of Current Knowledge and WHO Efforts for Global HIV Drug Resistance Surveillance

Silvia Bertagnolio¹, Neil T. Parkin², Michael Jordan^{1,3}, James Brooks⁴ and J. Gerardo García-Lerma⁵ ¹World Health Organization, Geneva, Switzerland; ²Data First Consulting, Inc., Menlo Park, CA, USA; ³Tufts University School of Medicine, Boston, USA; ⁴National HIV and Retrovirology Laboratories, Public Health Agency of Canada, Ottawa, Ontario, Canada; ⁵Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control, Atlanta, GA, USA

50 representatives from different countries with HIVDR, laboratory, clinical, epidemiologic expertise

Role: Advise WHO on development of standardized tools, methodologies and training to evaluate emergence and transmission of HIVDR worldwide

Assist with development of early warning indicators to alert public health action related to HIV DR and ART programs

WHO!MANUAL!FOR!HIV!DRUG!RESISTANCE!TESTING!

!

USING!DRIED!BLOOD!SPOT!SPECIMENS!

JANUARY 2010

Table 1. Overview of published studies investigating optimal DBS storage conditions

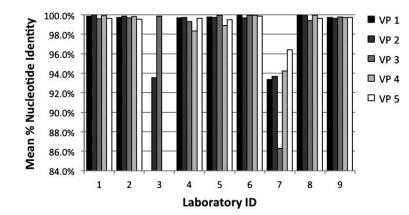
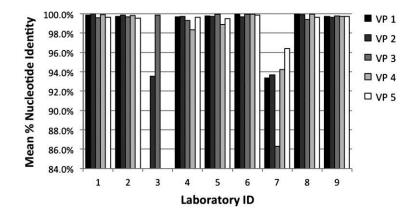

Storage conditions tested					
Study	Time	Temperature/Humidity	Desiccant	Outcomes	
Garcia-Lerma ¹⁵	1 to 16 weeks	37°C/high humidity, -20°C	Yes	DBS stable at 37°C only for 1-2 weeks20°C	
				recommended for long-term storage20°C superior	
				for short and long term.	
Buckton ⁴	3 months	-20°C, 4°C, 20°C		HIV DNA PCR only. No observed degradation in HIV	
				DNA during 3 month study period.	
Bertagnolio ³	3 months	37°C/85% humidity	Yes	Good amplification rate (90%)	
McNulty ⁸	6 years	-30°C		Complete degradation at ambient temperature; stable at	
	5 years	Ambient temperature and -70 $^\circ\mathrm{C}$		-30°C and -70°C; -20°C recommended for long-term	
	2-3 years	-20°C		storage	
Nelson ¹⁴	3 to 6 years	Ambient temperature	Yes	Moderately successful amplification rate (69%); 1 log	
				drop in viral load.	

Table 3. Overview of alternative published HIV DBS genotyping methods

Study	Genotyping method(s)	Amplicon size	Storage conditions	Sample characteristics	Number of samples tested	Viral load of tested samples (copies/mL)	Amplification success rate*	Sequence concordance vs. plasma†
Masciotra 2007 ⁷	Viroseq	1.8 kb	-20°C, 18 to 26 weeks	Mostly treatment experienced, subtype B	60	78 to 676,694 (median: 9135)	Overall: 83% VL>2000: 100% VL <2000: 54%	98.8%
Youngpairoj 2008 ¹¹	Viroseq or in- house nested RT- PCR	1.8 kb or 1 kb	4°C, 1 year	Treatment experienced, subtype B	40	518 to 676,694 (median: 13,680)	Viroseq: 57.5% In-house: 95%	94.5% (drug resistance mutations, DBS/in house vs. plasma/ViroSeq)
McNulty 2007 ⁸	In-house nested RT-PCR	1 kb	-20°C, 2-3 years	Untreated, subtypes from Cameroon, subtypes A, CRF02	40	665 to 645,256 (median: 23,715)	Overall: 92% VL>10,000: 100% VL <10,000: 73%	98.5%
Ziemniak 2006 ¹²	In-house nested RT-PCR	RT: 663 bp	Ambient, 0-5 months	Treated and untreated patients from the US, subtype B	9	<50 to 94,600 (median: 17,792)	Overall: 94% VL≥193: 100%	Not assessed
Bertagnolio ³	In house nested RT-PCR	RT: 700 bp	37°C, 85% humidity, 3 months	Untreated subjects from Mexico, subtype B	103	Not all tested	90.1% either PR or RT region; 78.2% for both regions	99.9% (in samples with resistance mutations)
Hallack ⁶	Trugene	1.3 kb	-20°C	Treated and untreated patients from the US, subtype B	33	1178 to 414,212 (median: 11,666)	Overall: 78.8% VL >6000: 90.5% VL <6000: 58.3%	99.3%
Garrido ⁵	In-house nested RT-PCR: RT and gp41fragments	RT: 726 bp	4°C, no desiccant	Treated patients from Angola; many subtypes	77	1000 to 850,000	RT: 30% gp41: 43%	Not assessed
Steegen ¹⁰	In-house nested RT-PCR	PR: 458 bp RT: 646 bp	-20°C	Treated and untreated patients from Kenya; subtypes A, C, D, CRF16	29	55 to >100,000	96.6% either PR or RT region; 89.7% for both regions; VL > 100: 100%	Not assessed
Buckton ⁴	In-house nested RT-PCR	PR: 758 bp RT: 805 bp	-20°C	Clinic patients from the UK; subtypes A, B, C, CRF02	12	80 to 115,300 (median 10,950)	PR: 83% RT: 100%	Not assessed


*Note: it is likely that the quality of field-collected DBS is substantial inferior to that of lab-collected DBS (which are often used in comparison studies) and especially plasma, with respect to amplification success rates † mean nucleotide sequence identity, unless otherwise noted

In-House Genotyping Performance on DBS in the Global WHO Laboratory Network

Sequence Reproducibility

Mean sequence identity 96.7-100%

Sequence Accuracy

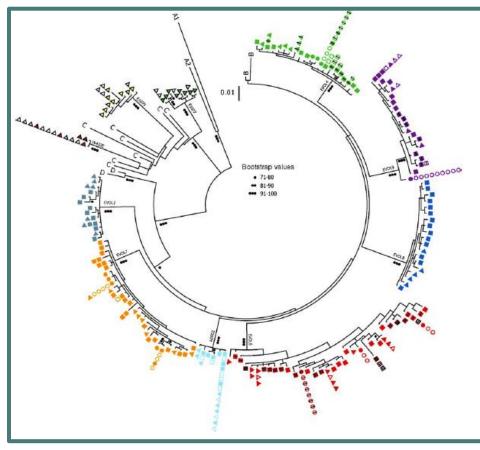
Mean percentage identity 98.4-100%

Available online at www.sciencedirect.com

Journal of Virological Methods 136 (2006) 238-247

www.elsevier.com/locate/jviromet

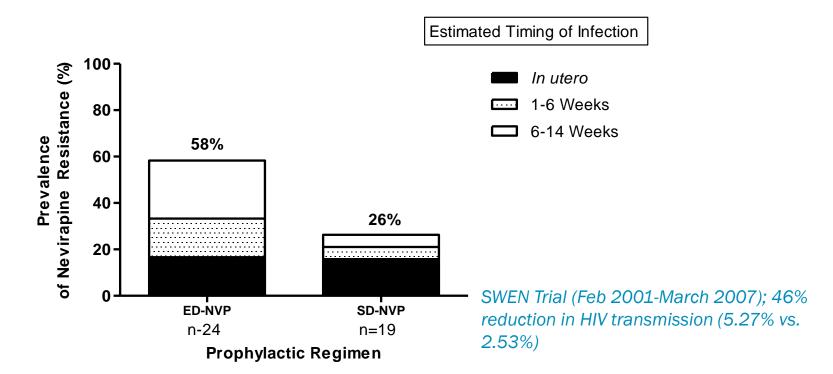
A sensitive genotyping assay for detection of drug resistance mutations in reverse transcriptase of HIV-1 subtypes B and C in samples stored as dried blood spots or frozen RNA extracts


Carrie Ziemniak^a, Allison George-Agwu^a, William J. Moss^b, Stuart C. Ray^c, Deborah Persaud^{a,*}

^a Department of Pediatrics, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Park Building, Baltimore, MD 21287, United States ^b Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States ^c Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States


> Received 3 March 2006; received in revised form 16 May 2006; accepted 25 May 2006 Available online 7 July 2006

Ziemniak C et al. J Virol Methods July 2006


Concordance between Plasma and DBS Genotypes

663 bp HIV RT

Genotyping from DBS to Assess Clinical Trial Outcomes (Ethiopian Infants)

Genotyping successful from 93% of 46 infants with DBS collected at age 6 months Stored for a median of 3.2 years (IQR 1.6-4.1 yrs) Relevant clinical findings: Higher prevalence of nevirapine resistance at 6 months in ED-NVP compared with SD-NVP exposed infants 56% still with NVP resistance detectable at one year

SWEN Study Team; Lancet 2008; Persaud D et al. ARHR 2011

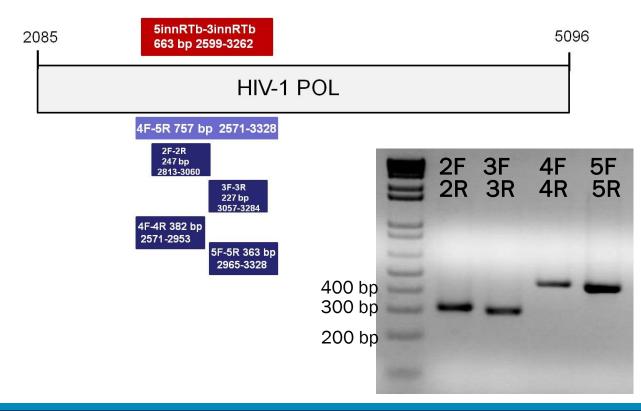
Preservation of Low-frequency Nevirapine Resistance Mutations in DBS

	180	190	
			-
C_ET_86_ETH2220	APNPEIVIYQYMDD		E
Month 6_Population			1
Month 6_Clone 1	ER	A	1
Month 6_Clone 2	ER	A	1
Month 6_Clone 3	ER	A	1
Month 6_Clone 4	ER	A	1
Month 6_Clone 5	ER	A	
Month 6_Clone 6	E.R	A	1
Month 6_Clone 7	E.R	A	1
Month 6_Clone 8	ER	A	
Month 6_Clone 9	ER	A	
Month 6_Clone 10	ER	A	
Month 6_Clone 11	ER	A	
Month 6_Clone 12	ER	A	
Month 6_Clone 13	ER		
Month 6_Clone 14	ER	A	
Month 6_Clone 15	ER	A	
Month 6_Clone 16	ER	A	
Month 6_Clone 17	ERLERENCE	I A	1.
Month 6_Clone 18	ER	A . 🛛 .	1.1
Month 6_Clone 19	ER	A	
Month 6_Clone 20	ER	A	
Month 6_Clone 21	ER	A	
Month 6_Clone 22	ER	A	
Month 6_Clone 23	ER	A	
Month 6_Clone 24	ER	A	
Month 6 Clone 25	ER	A . 🛛 .	
Month 6_Clone 26	ER	A	
Month 6_Clone 27	ER	I A	
Month 6_Clone 28	ERS	A	
Month 6_Clone 29	ER	A	
Month 6 Clone 30	ER	A	
Month 6 Clone 31	ER	A	
Month 6 Clone 32	ER	A	
Month 6 Clone 33	ER	I A	
Month 6 Clone 34	ER	A	
Month 6 Clone 35	ER	I A	
Month 6_Clone 36	ER	A	
Month 6_Clone 37	ER	A	
Month 6_Clone 38	ER	A.	1
Month 6 Clone 39	ER	A.	1
Month 6_Clone 40	ER	A L	1
Month 6 Clone 41	ER	i i âi i	1
Month 6_Clone 42	ER	i i âi i	1
Month 6 Clone 43	ER	i i âi i	1
Month 6 Clone 44	ER	i i âi i	1
Nonth 0_Clone 44	ED	· · · · 🗛 · 🖉 ·	1

Month 6 G190 A Clonal Frequency (n=44) = 100%

	180	190	
	APNPEIVIYQYMDDI	YVGSI	L E
C_ET_86_ETH2220 Month 12 Population		10651	
			1.1
Month 12_Clone 1 Month 12_Clone 2	ER		1.1
	ER		1.1
Month 12_Clone 3 Month 12 Clone 4			
Month 12 Clone 5	ER		
Month 12_Clone 6	ER		
Month 12_Clone 6			
Month 12_Clone 7 Month 12 Clone 8	ER	1111	
Month 12_Clone 8	ER	1 I A I	1.1
Month 12_Clone 9 Month 12 Clone 10	ER		1.1
	ER		1.1
Month 12_Clone 11 Month 12 Clone 12		1111	
	ER	A .	
Month 12_Clone 13	ER		
Month 12_Clone 14	ER		
Month 12_Clone 15			
Month 12_Clone 16	ER		
Month 12_Clone 17	ER		· · ·
Month 12_Clone 18			· · ·
Month 12_Clone 19	ER		· ·
Month 12_Clone 20	ER		· ·
Month 12_Clone 21	ER	A .	· ·
Month 12_Clone 22 Month 12 Clone 23	ER		
Month 12_Clone 23	ER		• •
Month 12_Clone 24 Month 12 Clone 25	ER		1.1
Month 12_Clone 26	ER		
Month 12_Clone 27	ER		· ·
Month 12 Clone 28	ER		
Month 12_Clone 29	ER		1.1
Month 12 Clone 30	ER		
Month 12 Clone 31	ER		
Month 12_Clone 32	ER		
Month 12 Clone 33	ER		
Month 12 Clone 34	ER		
Month 12 Clone 35	ER		
Month 12 Clone 36	E R X ~		
Month 12 Clone 37	E R		
Month 12_Clone 38	E R		
Month 12_Clone 39	E R		
Month 12_Clone 40	E R		
Month 12_Clone 41	ER		
Month 12_Clone 42	ER		
Month 12_Clone 43	ER		
Month 12_Clone 44	ER		
Month 12_Clone 45	ER		
Month 12_Clone 46	ER		
Month 12_Clone 47	ER		
Month 12_Clone 48	ER		
Month 12_Clone 49	E R		1.1
			,

Month 12 G190 A Clonal Frequency(n=49) = 6.1%


Conclusion

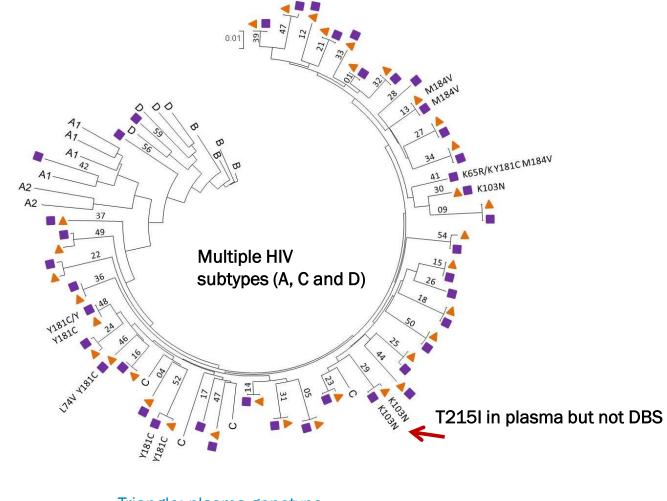
FEASIBILITY OF GENOTYPING FROM DBS COLLECTED DURING A CLINICAL TRIAL IN A RESOURCE-CONSTRAINED SETTING AND DESPITE YEARS OF STORAGE

Clinical Trial#2 IMPAACT P1060

Use of Dried-Blood-Spot Samples and In-House Assays To Identify Antiretroviral Drug Resistance in HIV-Infected Children in Resource-Constrained Settings[⊽]

Carrie Ziemniak,¹ Yohannes Mengistu,² Andrea Ruff,³ Ya-Hui Chen,¹ Leila Khaki,⁴ Abubaker Bedri,² Birgitte B. Simen,⁵ Paul Palumbo,⁶ Susan H. Eshleman,⁴ and Deborah Persaud^{1*}

Ziemniak C et al. JCM 2011


Storage Conditions and Yield of Genotyping Clinical Trial #2 (IMPAACT P1060)

	Initial Yield	Negative Samples Tested with Shorter Amplicons	Overall Yield with complete coverage of HIV-
	(No. Positive/ No .Tested) [%]	(No. Positive/ No. Tested) [%]	RT (No. Positive/ No. Tested) [%]
Overall	38/49 [78%]	3/11 [27%]	41/49 [84%]
Optimally Stored	29/33 [88%]	1/4 [25%]	30/33* [91%]
Sub-optimally Stored	9/16 [56%]	2/7 [43%]	11/16 [69%]

Stored for 0.3 to 1.8 years Yield increased with optimal storage and with shorter amplicons

Ziemniak C et al. JCM 2011

Clinical Trial#2: IMPAACT P1060

Viroseq

100% concordant with

plasma genotypes by

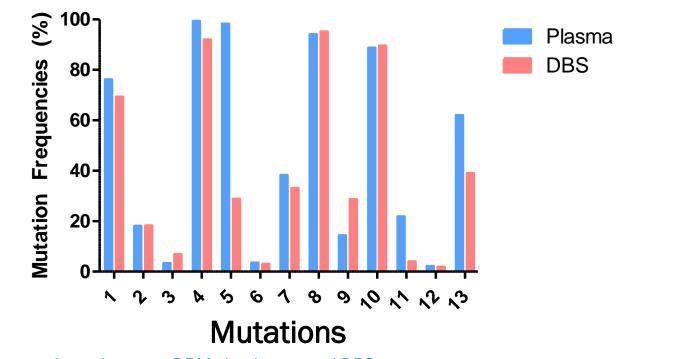
Triangle: plasma genotype Square :DBS genotypes

Conclusion

EQUIVALENCY OF DBS GENOTYPING WITH PLASMA BY POPULATION SEQUENCING

FEASIBLE FOR MONITORING CLINICAL TRIALS AND ART OUTCOMES IN RESOURCE-CONSTRAINED SETTINGS

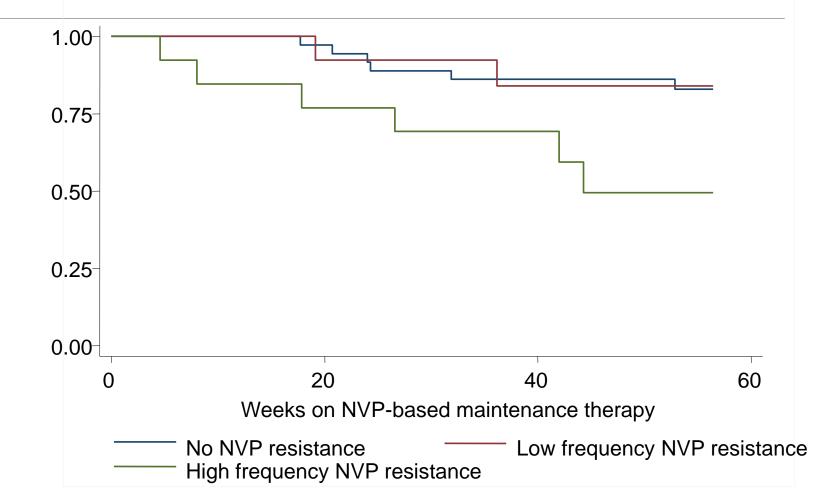
Next Generation Sequencing Methods


 Pyrosequencing Dried Blood Spots Reveals Differences in HIV Drug Resistance between Treatment Naïve and Experienced Patients

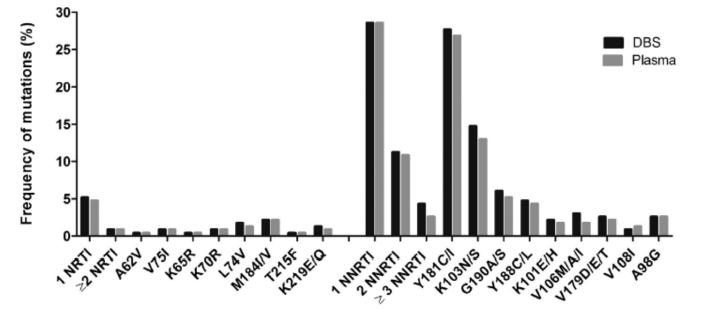
Hezhao Ji¹, Yang Li¹, Binhua Liang^{2,3}, Richard Pilon¹, Paul MacPherson⁴, Michèle Bergeron¹, John Kim¹, Morag Graham^{3,5}, Gary Van Domselaar², Paul Sandstrom¹, James Brooks¹*

	Average Sequence Concordance Rates			
Plasma viral load (c/ml)	DBS vs. Plasma	DBS vs. PBMC	Plasma vs. PBMC	
504-50,192	82.9 ± 11.9%	78.9 ± 10.9%	75.3 ± 14.7%	
<5000	72%	75.3%	65.7%	
≥5000	88.8%	80.9%	80.6%	

Plasma/DBS concordance highest at VL≥5000 copies/ml and with no ART exposure


Next Generation Sequencing from DBS Clinical Trial #2 (IMPAACT P1060)

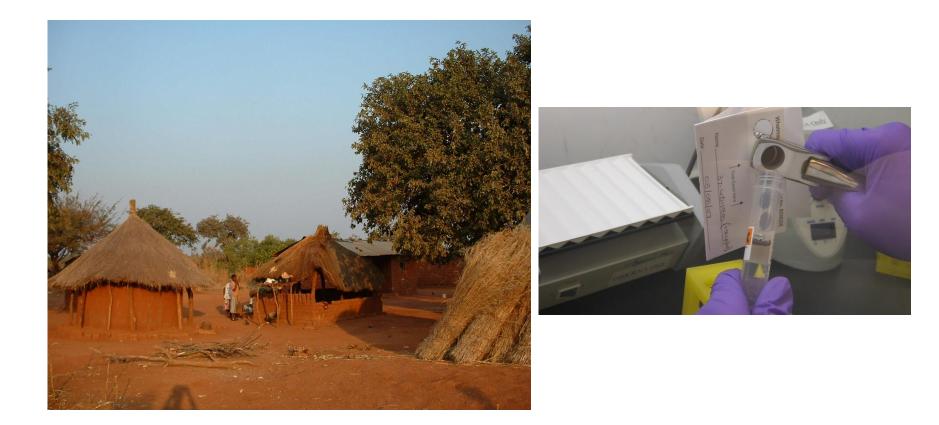
97.1% concordance between DRMs in plasma and DBS Median mutant frequencies DBS 3.4% (IQR 1.6-30.0%) vs. 3.5% (IQR 1.4-38.3%) in plasma Discordance more likely when present at low frequencies (median 1.5%; IQR 1.2-3.2)


Ziemniak C et al. Abstract P89; IAS Peds 2012

Associations between Nevirapine Resistance Frequencies and Virologic Failure with Nevirapine-based HAART (P1060)

Persaud, IAS 2012, Washington, DC

High Sensitivity and Concordance of DBS and Plasma Genotypes


NRTI

NNRTI

Location	Population (N=238)	Approach	Findings
South Africa (5 sites)	Median age 27 wks [IQR 13-51 wks]	Paired plasma and DBS immediately stored at -80	Yield: 97.9% plasma 98.7% DBS
			92% concordance 99.5% mean nucleotide identity

Salimo A et al. J. Virol Methods 2015

DBS facilitates Drug Resistance Monitoring in Resource-Constrained Settings

Macha, Zambia (Photo courtesy of W. Moss, MD, MPH)

Acknowledgements

Persaud Laboratory

Carrie Ziemniak Ya Chen Anitha Moorthy Allison Agwu

Ethiopia SWEN: Andy Ruff, M.D. and Ethiopian SWEN Trial Study Team

IMPAACT Network (P1060 Team) (Paul Palumbo, M.D. and Sue Eshleman, M.D.)

Funding Agencies: Elizabeth Glaser Pediatric AIDS Foundation; NICHD, NIAID

Program: Joe Fitzgibbon, Rohan Hazra