

Overview of the underlying biology of immune activation linking it to obesity

Clovis Palmer PhD

Head, HIV Immunometabolism Laboratory, Burnet Institute Melbourne, Australia

Equity Through Better Health **burnet.edu.au**

OVERVIEW

Metabolic reprogramming during immune cell activation & inflammatory responses (canonical pathways)

Consequences of CD4 T cell and monocyte metabolic reprogramming in HIV infection

Immunometabolism: Bidirectional relationship adipocyte-immune cell interaction

Immunometabolism: Auxiliary pathways in immune cell activation

Sources of immune activation and metabolic disorders in ARTtreated PLWH

Image credit: Palmer HIV Immunometabolism Laboratory

Activated T cells reprogram glucose metabolism from oxidative phosphorylation to glycolysis

Michalek et al., Immunol Rev, 2010 Pearce et al., 2013, Science Palmer et al., Journal of Immunology 2016 Palmer et al Ebiomedicine, 2016

Activated T cells reprogram glucose metabolism from oxidative phosphorylation to glycolysis

	Naive T cells	Effector T cells	Memory T cells	
	Metabolically Quiescent	Metabolically Activated	Metabolically Primed	
	 Low Glut1 Low PI3K-mTOR signaling Basal nutrient uptake Basal glycolytic rate Minimal biosynthesis No net growth 	 High Glut1 High PI3K-mTOR signaling Nutrient uptake Glycolytic rate Protein, lipid and nucleic acid synthesis Spare respiratory 	 Medium to high Glut1 Moderate PI3K-mTOF signaling Mitochondrial mass Spare respiratory capability Basal nutrient uptake 	२
C	Naïve/memory	Th1	Th17	
Metabolic programs	Oxphos Lipid oxidation	Aerobic glycolysis	Aerobic glycolysis	
Metabolic Regulators		PI3K mTORC1		
Regulators	AMPK, Bcl-6	S6K, HIF-1α, Bcl-6	mTORC1, HIF-1α	

Maclver et al. Annu Rev Immunol., 2013

Palmer et al. Front. Immunology 2015 Palmer et al. Journal of Immunology 2016

Glycolytic metabolism remains elevated in CD4+ T cells in virally suppressed patients receiving cART

Cell Metab. 2014 July 1; 20(1): 61-72. doi:10.1016/j.cmet.2014.05.004.

The Glucose Transporter Glut1 is Selectively Essential for CD4 T Cell Activation and Effector Function

Andrew N. Macintyre^{#1}, Valerie A. Gerriets^{#1}, Amanda G. Nichols¹, Ryan D. Michalek¹, Michael C. Rudolph², Divino Deoliveira³, Steven M. Anderson², E. Dale Abel⁴, Benny J. Chen³, Laura P. Hale⁵, and Jeffrey C. Rathmell^{1,^}

Palmer et al., AIDS 2014

PI3K and mTOR regulate Glut1 expression on T cells

Macintyre et al., Cell Met. 2014 Palmer et al., FEBS Letters, 2017

CD4 metabolic activation in HIV

INCREASED:

- Glucose uptake
- Lactate production •
- Hexokinase activity ullet
- PI3K-mTOR activity ۲
- HIV infectivity ۲
- PD1 levels ullet
- **Exhaustion markers** ۲

Palmer et al, AIDS 2014 Palmer et al, EBiomedicine 2016

Hegedus et al, Retrovirol. 2014 McKinney et al, Nat Immunol 2018

Palmer et al, FEBS Letters, 2017 Masson et al, Front. Immunol. 2018

Medical Research, Practical Action

9600

Equity Through Better Health

PI3K/mTOR regulate glycolysis in activated monocytes and inflammatory (M1) macrophages

- LPS
- Pro-inflammatory cytokines/adipokines
- oxLDL

Lee et al., J Nucl Med, 2014

Palmer et al., EBiomedicine, 2016

Frailty in Aging PLWH (Melbourne Silver Aging Cross Sectional Study)

Palmer et al., Journal of Immunology, 2014

\$600

Equity Through Better Health

GLUT1-dependent glycolysis increases inflammatory cytokine production

Adipose tissue-derived macrophages

Freemerman et al., J Biol Chem, 2014

9600

Equity Through Better Health

AIDS 2017 Increased glucose transporter-1 expression on intermediate monocytes from HIV-infected women with subclinical cardiovascular disease

Butterfield, Tiffany R.; Hanna, David B.; Kaplan, Robert C.; Kizer, Jorge R.; Durkin, Helen G.; Young, Mary A.; Nowicki, Marek J.; Tien, Phyllis C.; Golub, Elizabeth T.; Floris-Moore, Michelle A.; Titanji, Kehmia; Fischl, Margaret A.; Heath, Sonya L.; Martinson, Jefferey; Crowe, Suzanne M.; Palmer, Clovis S.; Landay, Alan L.; Anzinger, Joshua J.

Women's Interagency HIV Study

Participants with more than 75th percentile and less than 25th percentile

Age-adjusted intima-media thickness (IMT) at the right common carotid artery and bifurcation

\$600

Equity Through Better Health

Unique metabolic activation of adipose tissue macrophages in obesity promotes inflammatory responses

Diabetologia, 2018

Lily Boutens · Guido J. Hooiveld · Sourabh Dhingra Robert A. Cramer · Mihai G. Netea · Rinke Stienstra

KEY POINTS

- Mouse adipose tissue macrophages (ATM) have BOTH increased glycolysis and oxphos (Extracellular flux measurement)
- Metabolic routes for cytokine release from ATM in <u>lean adipose</u> tissue: glycolysis, FAO and glutaminolysis
- Pro-inflammatory ATM traits in <u>obese adipose tissue</u>: **glycolysis**
- HIF-1a, a key regulator of glycolysis played no role in proinflammatory activation of ATMs

9600

Equity Through Better Health

Dysfunctional AT promotes development of metabolic and vascular disease

Burnet Institute Medical Research: Practical Action.

Leptin Promotes Glycolytic Metabolism in Activated T Cells

One well-established connection between systemic nutritional status and immune cell metabolism is through leptin. As mentioned above, leptin is secreted by adipocytes in proportion to adipocyte mass and leptin levels, thereby trending with nutritional status (106). In states of malnutrition or following fasting, circulating leptin levels are decreased, whereas in obesity, leptin levels are increased. Leptin acts directly on CD4+ T cells through the LepR to direct changes in T cell metabolism and function (26, 27, 107-110). Since T cell metabolism and function are intimately linked, any change in immune cell metabolism can lead to a change in the function of that cell, altering cellular proliferation, differentiation, and cytokine production. Leptin has been shown to promote both CD4+ T cell inflammatory cytokine production and glucose metabolism. Indeed, T cells unable to respond to leptin had impaired upregulation of glucose uptake and glycolysis following T cell activation (26). In the context of malnutrition, fasting-induced hypoleptinemia caused activated CD4+ T cells to produce less inflammatory cytokines IFN-y and IL-2 (26, 27). That functional defect did not extend to naïve T cells or Treg cells, however, presumably because those cells do not depend on increased glycolytic metabolism to fuel

immune surveillance or regulatory function. In subsequent stud-

Alwarawrah et al., Front Immunol 2018

Bidirectional relationship: adipocyte-immune cell interaction

Mod: Lee et al., Cell 2017

Auxiliary pathways in immune cellular activation

Hesham et al., Front. Immunol., 2017

Immunometabolism provides new therapeutic opportunities for inflammation and obesity

Mod: Palmer et al., F1000 Reviews 2018

CONCLUDING POINTS

- Metabolic reprogramming of monocytes from oxidative phosphorlyation to glycolysis is associated with inflammatory responses
- Metabolic reprogramming of immune cells is influenced by adipose tissue-derived molecules receptor engagement (e.g AdipoR1, LepR
- Immunometabolic targetting offers new therapeutic opportunities for obesity

sweet I tooth,

Burnet Institute Immunometabolism Group

Dr Ianina Hutler Hui-Ling Yeoh Riya Palchaudhuri Jesse Mason Mati Kargren

Burnet Institute Prof Suzanne Crowe

Rush University

Prof Alan Landay

Monash Infectious Disease Department

Prof Jenny Hoy A/Prof Kate Cherry Dr Allen Cheng

Baker Institute A/Prof Peter Meikle Jacquelyn M Weir

University of The West Indies

Dr Joshua Anzinger Tiffany Butterfield

\$f@@

Equity Through Better Health