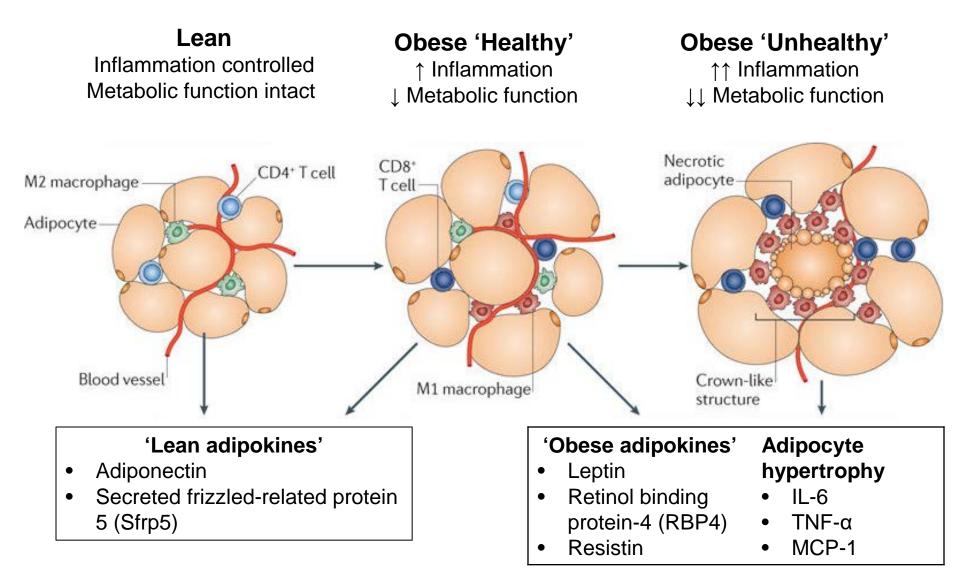
Role of Leptin and Other Adipokines in HIV Infection and HIV-related Obesity

John Koethe MD, MSCI Vanderbilt University Medical Center Division of Infectious Diseases

National Institutes of Health Obesity and Fat Metabolism in HIV-infected Individuals Workshop May 22 and 23, 2018

Disclosures


John Koethe receives research funding from Gilead Pharmaceuticals

<u>Adipokines</u>: peptides signaling the energy storage status of adipose tissue to brain, and other organs.

Appetite Satiety Energy expenditure Leptin Activity Adiponectin Immune system Visfatin/Nampt/PBEF Blood pressure Immune cell attraction Vaspin Endothelial function Differentiation Heart muscle contractility RBP4 Systemic inflammation Wound healing Smooth muscle cells FGF21 BMPs Insulin sensitivity Nesfatin-1 Lipid accumulation Hepatokine secretion Cathepsins Lipid metabolism Apelin Growth factors Omentin Lipocalin Insulin secretion and hundreds more Glucagon secretion Insulin sensitivity **Adipokines inform** the body that Insulin sensitivity Myokine secretion sufficient energy is Lipid storage Triglyceride storage available to mount a Insulin sensitivity given response, or Glucose and lipid transport that limited energy Adipokine secretion Differentiation availability should Resorption Cell growth constrain the Incretin secretion Fat distribution response Browning

Fasshauer M & Bluher M. Trends in Pharm. Sci. 2015.

Relative adipokine production shifts with progressive obesity

Adiponectin and leptin balance central to regulating multiple biological processes

<u>Adiponectin</u>

•Increases in lean states, falls precipitously with visceral obesity (a *Hormone of Starvation*)

•Stimulates food intake and suppresses energy expenditure

•Sensitizes liver and muscle to insulin

•Anti-atherogenic (reduces endothelial activation, prevents foam cell formation and plaque T cell entry)

•Adipose paracrine activity:

•Promotes M2 macrophage phenotype, clearance of apoptotic debris

•Reduces T cell infiltration, activation

•Promotes adipocyte hyperplasia

<u>Leptin</u>

•Circulates in proportion to fat mass (a *Hormone of Plenty*)

•Servers as indicator of global energy stores

•Reduces appetite and increases activity

•Receptors are widely expressed (CNS, immune, CV, hepatic, GI and other tissues) – A *rheostat* for many processes

•Broad immune effects:

•Innate immune cell proliferation/activation

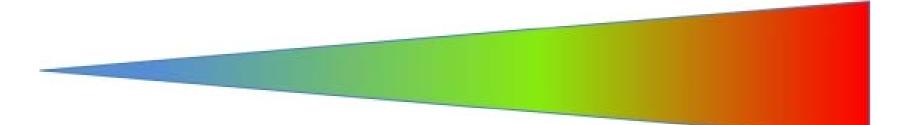
- •T and B cell proliferation and survival
- •T_H1 polarization

Tilg H and Moschen A, Nature Rev, 2006; Ohashi K, et al. Trends in Endo and Met, 2014.

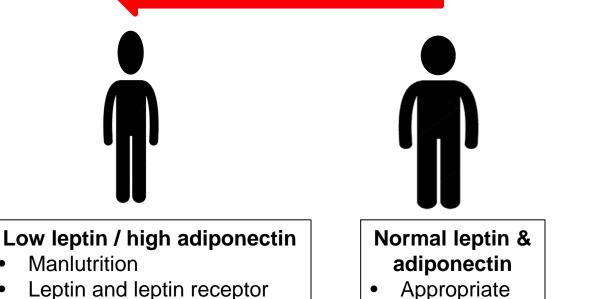
Adiponectin and leptin: a delicate balance regulating immune activity

Low leptin / high adiponectin

- Malnutrition
- Leptin and leptin receptor deficits


Normal leptin & adiponectin

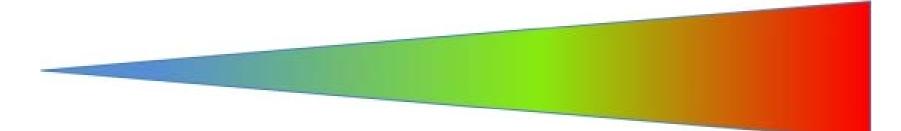
 Appropriate energy stores


High leptin / low adiponectin

• Obesity

Reduced response to antigen, proliferation, and activation to conserve energy Appropriate response to antigen, normal cell survival, de-escalation after threat resolved Lower barrier to cellular activation, high proliferation, robust cytokine production, impaired de-escalation

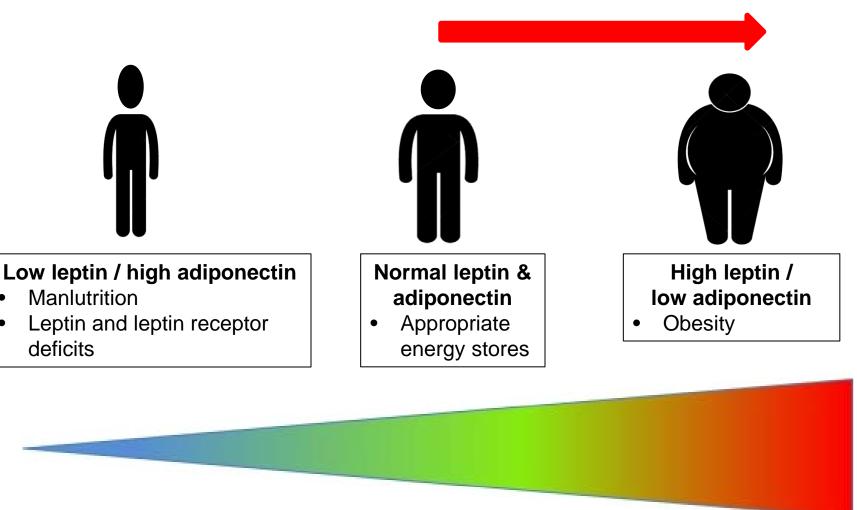
Conserved physiologic role



Appropriate
energy stores

High leptin / low adiponectin

• Obesity

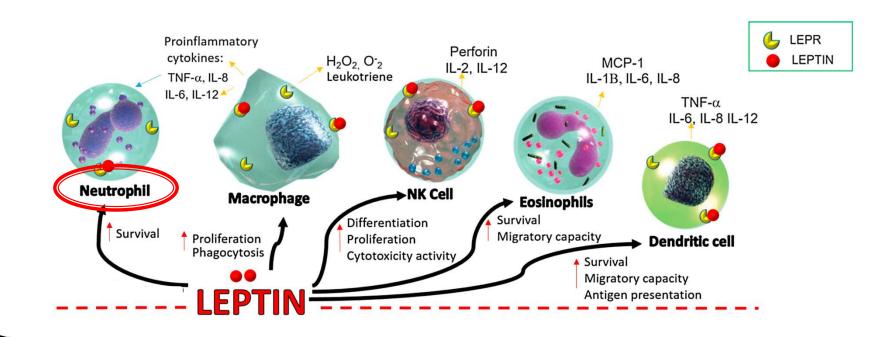


Reduced response to antigen, proliferation, and activation to conserve energy

deficits

Appropriate response to antigen, normal cell survival, de-escalation after threat resolved Lower barrier to cellular activation, high proliferation, robust cytokine production, impaired de-escalation

The World in 2018

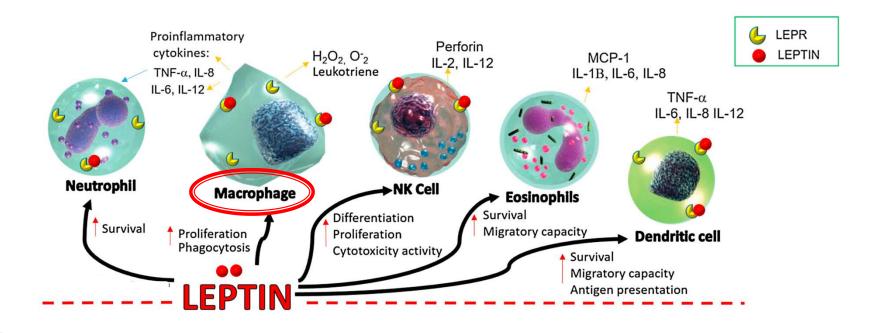


Reduced response to antigen, proliferation, and activation to conserve energy Appropriate response to antigen, normal cell survival, de-escalation after threat resolved Lower barrier to cellular activation, high proliferation, robust cytokine production, impaired de-escalation

Highlights of leptin effects on innate immunity

Neutrophils:

- Reduced apoptosis
- Increased phagocytic activity
- Enhanced CD11b expression

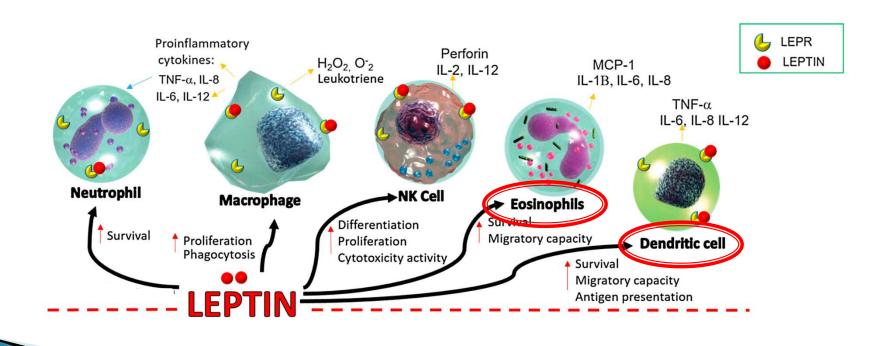


Perez-Perez A, et al. Cytokine and Growth Factor Reviews, 2017

Highlights of leptin effects on innate immunity

Monocytes/macrophages:

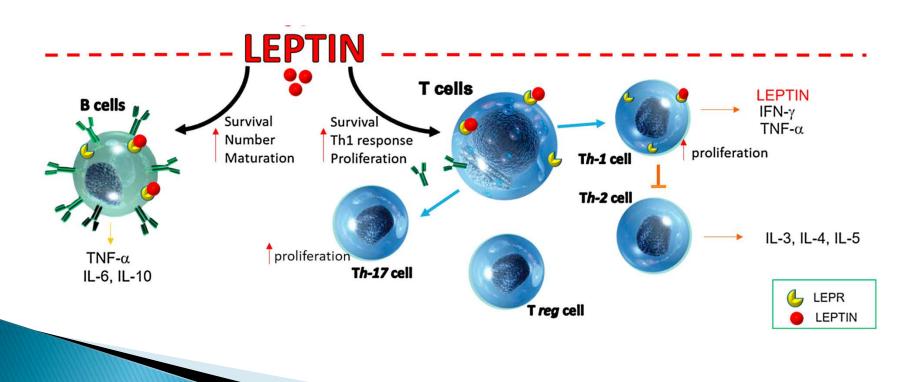
- Increased of phagocytic function
- Increased adhesion molecules
- Increased proliferation and activation marker expression (CD25, CD69)
- Increased TNF-α and IL-6 expression
- May serve as a chemoattractant in adipose tissue


Highlights of leptin effects on innate immunity

Dendritic cells:

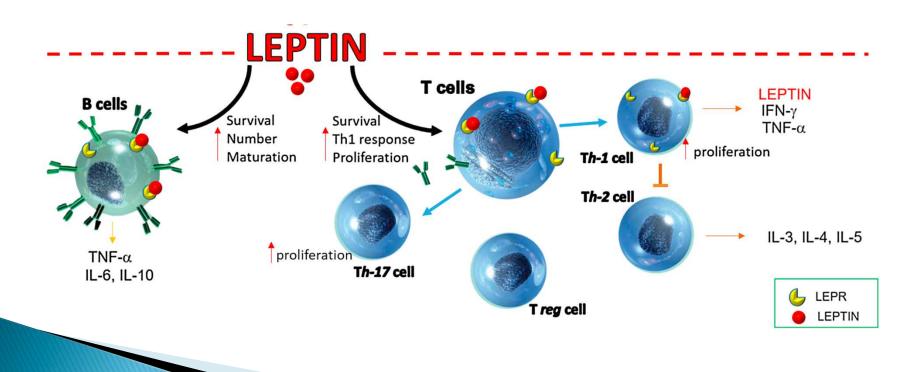
- Reduced apoptosis
- Shift towards T_H1 priming
- Increased TNF-α, IL-6, IL-8 production

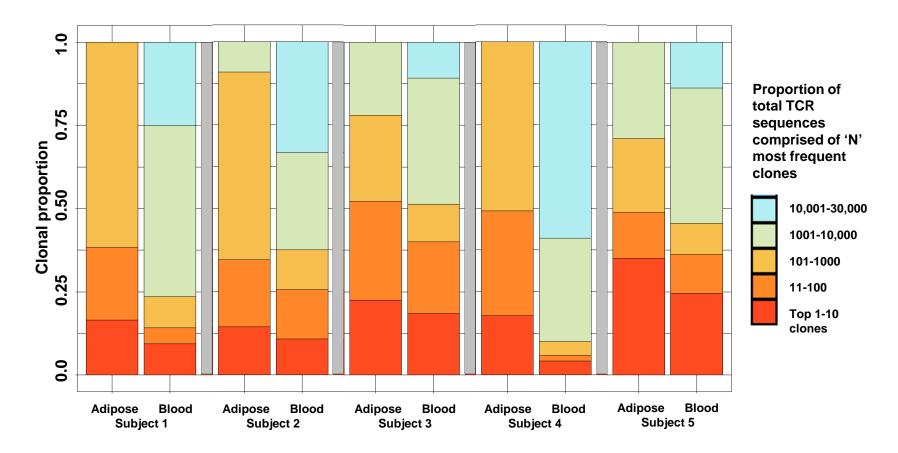
Eosinophils:


- Reduced apoptosis
- Increased activation
- Increased chemotaxis, migration, and adhesion molecule expression

Highlights of leptin effects on adaptive immunity

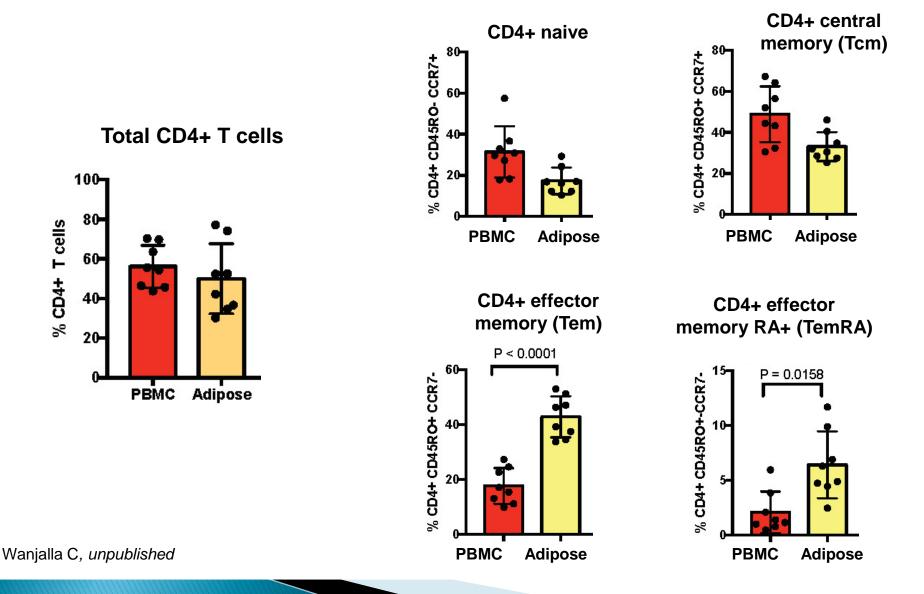
T cells:


- Increases proliferation of naïve cells
- Activation of CD4+ T cells markedly increases leptin receptor expression (less on CD8+ T cells)
- Increases adhesion molecule expression and activation markers (CD69, CD25, CD71)


Highlights of leptin effects on adaptive immunity

T cells:

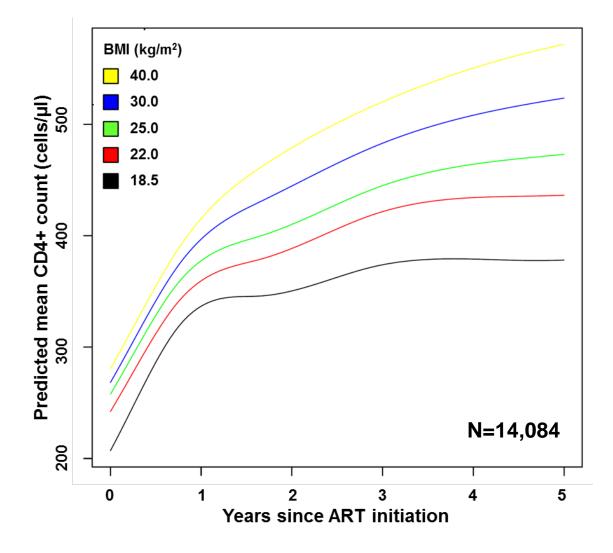
- Promotes expansion of activated CD4+ and CD8+ T cells
- Promotes polarization towards T_H1/T_H17 responses (sustained by autocrine loop of leptin section)
- Increased INF-γ, TNF-α expression
- Reduced Treg cell proliferation


CD8+ T cells in adipose tissue are more clonal compared to blood in HIV+ persons

• The 10 most prevalent T cell receptors comprise a larger percentage of the total repertoire in adipose tissue compared to paired blood (25% vs. 16%)

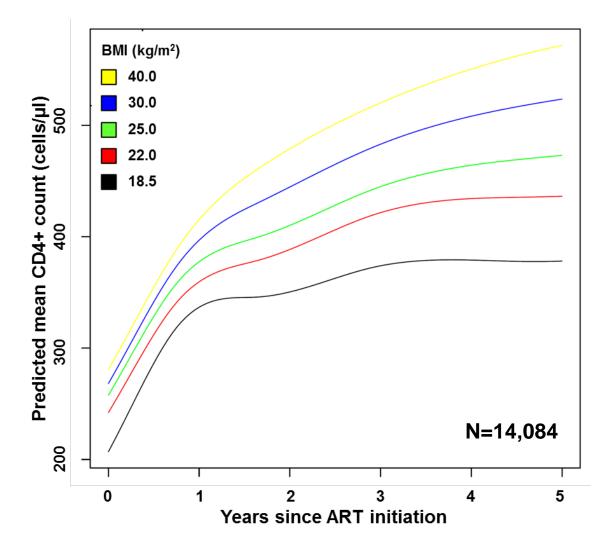
Koethe JR, et al. JAIDS. 2018

CD4+ T cell subsets in adipose tissue from HIV+ persons is enriched for effector memory cells



BMI and HIV progression in the pre-combination ART era

•A BMI \geq 30 kg/m² was associated with a slower progression to a CD4 <200, AIDS-defining event or HIV-related death compared to a BMI 20-25 kg/m²


•Each 1 kg/m² reduction in initial BMI was independently associated with a 24% increased risk of progression to AIDS over mean follow-up of 19 months

Higher time-updated BMI accompanied by greater CD4+ T cell recovery on ART

Koethe J, et al. JAIDS. 2016.

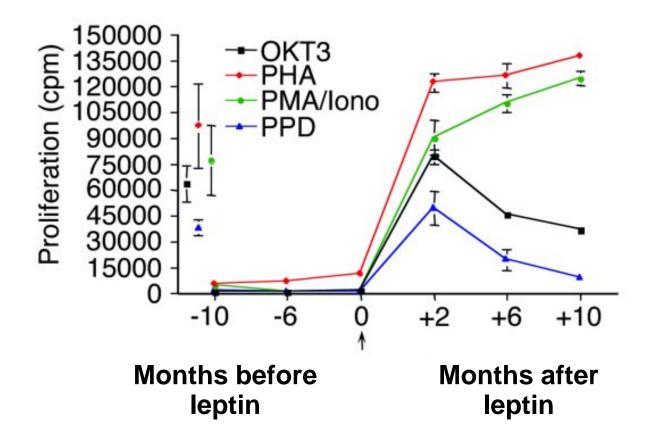
Higher time-updated BMI accompanied by greater CD4+ T cell recovery on ART

Could there be a role for leptin promoting immune recovery and/or response to opportunistic infections in HIV+ persons?

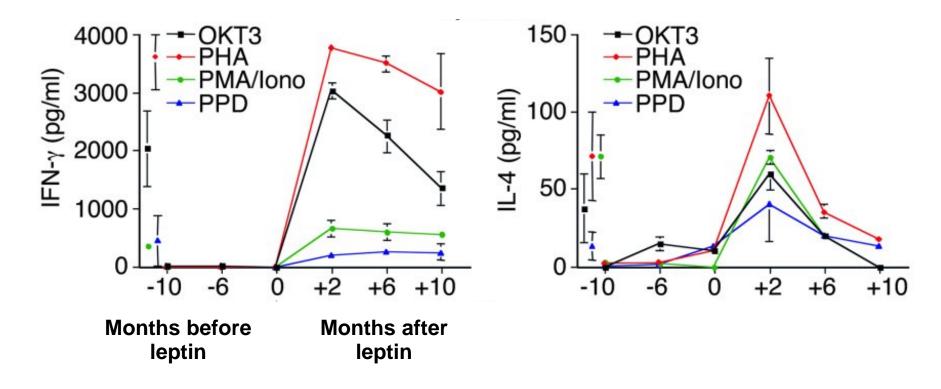
- A 3-year-old boy with congenital leptin deficiency (*ob⁻/ob⁻*)
- Weight 42kg before treatment with recombinant leptin
- Weight 32kg after 4 years of treatment

Before leptin (age 3, 42 kg) After leptin (age 7, 32 kg)

Farooqi IS & O'Rahilly S. *J Endocrinol* 2014; Farooqi IS, *et al. JCI.* 2002.


Proliferative responses of PBMCs to T-cell stimuli before and after leptin treatment

Cell type	-6 months	Treatment start	+2 months	+6 months	+10 months	Normal range (child age 3; cells/mm ³)
CD3⁺	2,686	2,416	1,893	3,262	3,087	1,200-2,500
(%)	(49%)	(58)	(51)	(72)	(66)	(65-82%)
CD4+	750	866	927	1,468	1,358	1,000-2,000
(%)	(18%)	(21)	(24)	(31)	(29)	(30-50%)
CD8⁺	1,836	1.450	850	1,468	1,543	240-1,000
(%)	(26%)	(25)	(22)	(31)	(33)	(25-35%)
CD19⁺	2,189	1,525	1,468	1,247	1,216	200-400
(%)	(31%)	(37)	(38)	(26)	(26)	(8-15%)


Proliferative responses of PBMCs to T-cell stimuli before and after leptin treatment

Cell type	-6 months	Treatment start	+2 months	+6 months	+10 months	Normal range (child age 3; cells/mm ³)
CD3+	2,686	2,416	1,893	3,262	3,087	1,200-2,500
(%)	(49%)	(58)	(51)	(72)	(66)	(65-82%)
CD4+	750	866	927	1,468	1,358	1,000-2,000
(%)	(18%)	(21)	(24)	(31)	(29)	(30-50%)
CD8+	1,836	1.450	850	1,468	1,543	240-1,000
(%)	(26%)	(25)	(22)	(31)	(33)	(25-35%)
CD19+	2,189	1,525	1,468	1,247	1,216	200-400
(%)	(31%)	(37)	(38)	(26)	(26)	(8-15%)

Proliferative responses of PBMCs to T-cell stimuli before and after leptin treatment

Cytokine responses of PBMCs to T-cell stimuli before and after leptin treatment

Recombinant leptin trials in HIV-associated lipodystrophy - summary

Study (year)	Design	Subjects &	Change in leptin - levels (ng/ml)	Beneficial effect on			Adverse effects
		Duration		Glucose metabolism	Lipid metabolism	Steatohepatitis	cheets
Lee <i>et al.</i> (2006)	Randomized crossover	7 M (LD- HIV)	1.34 to NR	+	+	_	None major
		4 months					
Mulligan <i>et al</i> . (2009)	Prospective open-label	8 M (LD- HIV)	2.7–21.3	+	++	NR	None Major
		6 months					
Magkos <i>et al.</i> (2011)	Double blind placebo controlled	9 M (LD- HIV)	3.7–16.5	+	-	+	Injection site reaction (1)
	controlled	3 months					
Sekhar <i>et al.</i> (2012)	Double-blind placebo controlled	17 M (LD- HIV)	2.6–34.4	+	improved non-HDL-C, no change in	NR	Weight loss (2), decline in CD4 ⁺ T-cell count (1)
		4 months			lipid kinetics		

No significant improvements in CD4+ T cell count in these studies

Simha V. Expert Rev Endo and Metab. 2014.

Potential future research areas

•Use of recombinant leptin to boost CD4 recovery or response to opportunistic infections among in malnourished (e.g., BMI <18.5 kg/m2) persons in resource-limited settings.

•HIV+ persons have a high adipose CD8+ cells and low CD4+, as seen in obesity, but less macrophage activation and CD4+ subset changes. Are lower tissue leptin levels a factor in this disparity between HIV and obesity?

•Will there be a potential role for *AdipRon* (new, oral adiponectin-receptor agonist) in persons with HIV – either for improving insulin sensitivity or reducing immune activation?

Acknowledgements

Vanderbilt Center for Translational Immunology and Infectious Disease Simon Mallal, MBBS Spyros Kalams, MD Elizabeth Philips, MD Wyatt McDonnell, BS Celestine Wanjalla, MD, PhD Briana Furch, MD, MPH Mark Pilkinton, MD, PhD Rama Gangula Ian Setliff, BS

<u>Hasty Laboratory</u> Alyssa Hasty, PhD Arion Kennedy, PhD Marnie Gruen, BS Tennessee Center for AIDS Research Laboratory Sciences Core Cindy Hager, BS Louise Barnett, BS Rita Smith, BS

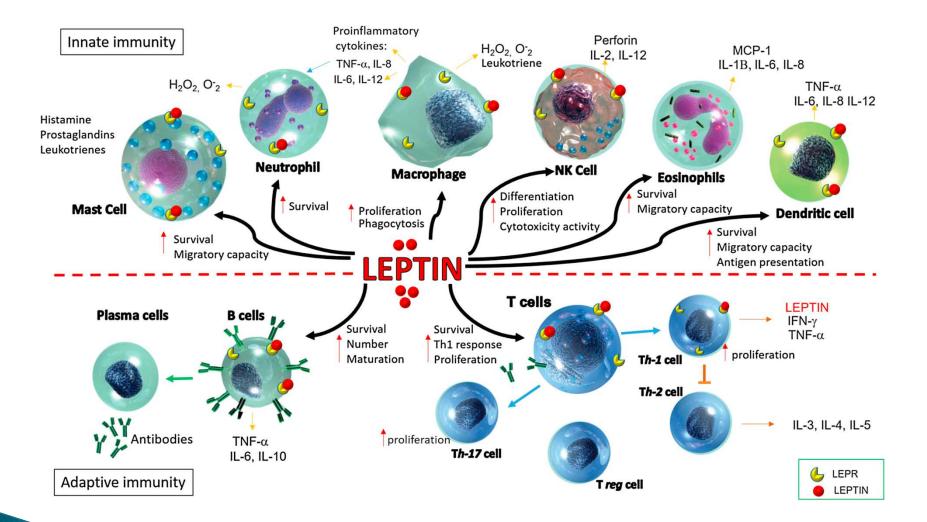
Vanderbilt Technologies for Advanced Genomics (VANTAGE)

Olivia Koues, PhD

Matt Scholtz, PhD

Paxton Baker, BS

Project funding •NIDDK R01DK112262 •NIDDK R56DK108352 •NIAID P30 AI110527 (TN CFAR)


Thank you

MEDICAL CENTER

Outline

- Pleiotropic effects of adipokines
- Adipokines and immune function
- Recombinant human leptin in HIV+ and HIV-negative person
- Research gaps and possible future studies

Adipokines and hsCRP in HIV+ persons

•Cross-sectional study of 106 HIV+ adults on >24 weeks of ART

•BMI range from <20 to >35 kg/m²

	β (95% Cl)	Adjusted P value
Leptin	1.95 (1.36, 2.80)	<0.001
Adiponectin	0.74 (0.45, 1.21)	0.23
Resistin	1.27 (0.90, 1.80)	0.18

Adipokines and hsCRP in HIV+ persons

Effect of body composition on hsCRP with and without adjustment for leptin						
Body composition	Without adju	stment for leptin	With adjustment for leptin			
variable	β1	P value	β2	P value		
Body mass index	1.57	0.02	1.22	0.54		
Waist-to-hip ratio	1.58	<0.01	1.22	0.03		
Limb fat	1.82	0.05	1.10	0.85		
Total body fat	2.16	<0.01	1.41	0.50		
Total body % fat	2.45	<0.01	1.62	0.31		
Trunk fat	2.55	<0.01	1.83	0.21		
Trunk % fat	2.88	<0.01	2.04	0.12		

Leptin mediated the relationship of BMI and DEXA absolute limb fat, body fat, and trunk fat with circulating hsCRP