
Interactions: HSV-2 and HIV

Effect of HIV on HSV-2

- ~85% of HIV+ are HSV2+
- Alters clinical presentation & frequency of HSV-2 shedding
- Longer duration of lesions (CD4 <200)
- HIV ↑ HSV-2 acquisition & transmission

Effect of HSV-2 on HIV

- ~ 50% are HSV-2
- HSV-2 ↑ HIV acquisition
- HSV-2 ↑ HIV levels in plasma & genital tract
- GUD ↑ HIV transmission

Gray 2001 & 2003, Corey 2004, Wald 2002, Freeman 2004 & 2006

Summary: HSV-2 & HIV Interactions

HSV-2 is highly prevalent in HIV-infected persons

Strong epidemiologic & biologic data:

HSV-2 increases HIV susceptibility & infectiousness

Large proof-of-concept study:
↓ HIV in plasma & genital tract

Complimentary HSV-2 suppression studies:

- HIV acquisition & HIV transmission
- Acyclovir & HAART, ACV in GUD management

HSV-2 provides a needed prevention strategy while developing HIV vaccines, microbicides, new interventions

Proving HSV-HIV synergy: interventions, populations and impact covered by current RCTs

1. Symptomatic HSV-2 increases **HIV transmission***

- 2. Symptomatic HSV-2 increases **HIV acquisition**
- **3.** HSV-2 infection increases **HIV transmission***
- 4. HSV-2 infection increases HIV acquisition

	HIV positive	HIV negative
Episodic therapy	1	2
Suppressive therapy	3	4

* Includes studies of HIV and HSV genital shedding

What about episodic treatment of genital ulcers in HIV+ persons?

Rationale

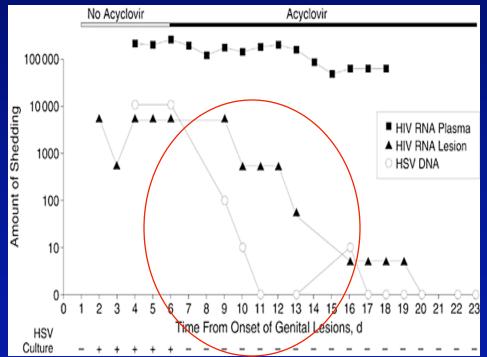
- Currently not treating major cause of GUD
- \uparrow HIV shedding from genital ulcers

Case Management

- Shorten duration of lesion, symptom relief

Public Health Impact

- Only 25% of HSV-2 is symptomatic
- Minority seek care ► 'Tip of the iceburg'
- No reduction in HIV shedding
- Unlikely to impact HIV transmission



Episodic therapy trials: outline

Place	Primary outcome	Interv'n	N	F-u	Measure ment	Progress
Ghana / CAR ANRS1212	HIV shedding	Acy. 400mg TDS x 5 d	441 F	1 mo.	D2/D4, D7, D14, D28	Completed/ results available
Malawi DFID & UNC	Ulcer healing (HIV shedding)	Acy. 800mg BD x 5 d	500 M/F	1 mo.	D2/D4, D7, D14 , D21, D28	Completed/ analysis
S Africa CDC	HIV shedding	Acy. 400mg TDS x 5 d	300 M	1 mo.	D7, D14, D21, D28	2007

Episodic HSV-2 Therapy: Reduced HIV Levels in Lesions & Blood Plasma

Lesional HIV shedding

Blood plasma HIV

1723

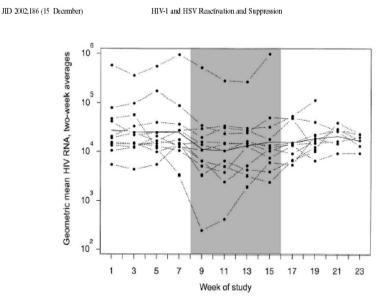


Figure 2. Geometric mean human immunodeficiency virus (HIV) RNA over 2-week periods for each of the 12 suppression substudy participants. Dashed lines connect the means for a given participant, and the solid line gives the geometric mean over participants for each 2-week period. The weeks during suppressive acyclovir therapy are shaded.

Schacker. JAMA. 1998.

Schacker. J Infect Dis. 2002.

Suppressive therapy trials: outline (1/2)

Place Funder	Primary outcome	Interv'n	N	F-u	Measure ment	Progress
Burkina Faso ANRS1285	HIV shedding	Val. 500mg BD	60 F (ARV) 150 F	3 mo.	Bi- weekly	Completed/ results available
S Africa WT	HIV shedding	Acy. 400mg BD	300 F	3 mo.	Monthly	Completed/ analysis
Zimbabwe NIH	HIV shedding	Acy. 400mg BD	250 F	1 mo.	Weekly	Completed/ analysis
Peru GSK/UW	HIV shedding	Val. 500mg BD	20MSM 20 F	18 wks	3x wk mucosal/ Weekly blood	Completed /results available
Cameroon NIH/UW	HIV shedding	Acy. 400mg BD	40 F?	1mo.?	3/week	Completed

Suppressive therapy trials: outline (2/2)

Place	Primary outcome	Interv' n	N	F-u	Measure ment	Progress
Mwanza, Tanzania WT	HIV shedding	Acy. 400mg BD	500 F	30 mo.	6- monthly	Mid 2007
Mwanza, Tanzania WT	HIV incidence	Acy. 400mg BD	830 F	30 mo.	6- monthly	Mid 2007
Multicenter HPTN 039	HIV incidence	Acy. 400mg BD	3277 MSM & F	18 mo.	3- monthly	Enrollment completed mid 2007
Multicenter Partners in Prevention -BMGF	HIV transmission	Acy. 400mg BD	3000 HIV disc couples	12-24 mo.	3- monthly	~2300 couples Late 2008

Suppressive HSV-2 therapy for HIV Prevention

Likely bigger impact than episodic ACV

Higher cost

- Lowest is \$40 for 1 year with generic ACV
- Higher pricing in developing countries

Is it possible to target suppressive HSV-2 therapy?

- For clinical benefits in HIV+:
 - Based on frequency of HSV-2 reactivations?
 - Based on CD4 (&/or plasma HIV levels)
- For public health, if reduces HIV transmission:
 - Based on sexual activity

Summary of ongoing research

We will know

- Proof of concept trials
- Impact on HIV acquisition (HPTN, WT)
- Impact on HIV transmission (Partners in Prevention)
- Mechanistic explanation (shedding)
- Different durations, different settings
- VACV vs. ACV (potential difference in adherence)

We won't know

- Exact biological mechanisms (impact through other herpes viruses? Important to know for VACCINE)
- Impact on HIV disease progression (some data on surrogate markers, virological endpoints and CD4)

Still required/we will do:

- Economic analysis
- Impact of various combination of approaches for epidemiological impact (modelling)
- Evaluation of HSV treatment to improve HIV disease in individuals

Looking forward...

- Potential big impact on HIV epidemic if proof-of-concept trials reduce HIV acquisition and/or transmission
 - Population attributable fraction of new HIV infections due to HSV-2 ~50%

Impact of HSV-2 interventions & who to target?

Mathematical modeling of population impacts & targeting HIV- vs HIV+ persons

How to increase treatment of HSV-2?

Costs, availability & prescribing authority for acyclovir in developing countries

What is role of serologic testing?

Particularly for HIV+ persons with 80% coinfection

What provider Interventions are needed?

- Training about diagnosis, counseling, and management of genital herpes
- Little demand: perception from prescribers, patients, governments still high cost of drug, though generic...
- Acyclovir is not a 'magic' bullet ultimatlely need HSV-2 VACCINES+++
 - Will require lobbying!! (role of WHO, BMGF, EU, PEPFAR and others)