

Overview of Efficacy Study Design Strategies for new Systemic PrEP Products

Deborah Donnell

Future of PrEP and Microbicide Research Washington DC, Jan 6, 2012.

Tom Fleming, Jim Hughes, Ying Chen, Lei Wang

VACCINE AND INFECTIOUS DISEASE INSTITUTE

Framework for Design Choices

Type of new product
 Choice of control/standard

- Populations and known efficacy
- Superiority and non-inferiority
- Scientific rationale and ethical basis

Type of new product

- New daily oral drug
 - Higher or equivalent efficacy
 - Risks and benefits
 - More effective drug, fewer side effects, higher adherence
 - Avoid first line treatment drugs, lower risk of community resistance
 - Expanded options, choice
- Longer acting formulation (injectable, less frequent oral dose)
 - Higher efficacy
 - Risks and benefits
 - Increased adherence and convenience
 - Safety concerns
- New dosing strategy for TDF/FTC (e.g. coitally dependent)
 - Equivalent efficacy
 - Risks and benefits
 - Likelihood of active drug at time of exposure
 - Decreased drug exposure and cost

Choice of control

- Active control: Daily TDF/FTC
 Arm 1: Daily TDF/FTC
 Arm 2: New systemic drug or dosing strategy
- Placebo control:
 - "Add-on" design
 - All study participants have access to daily TDF/FTC
 Arm 1: Daily TDF/FTC + placebo
 Arm 2: Daily TDF/FTC + new systemic drug
 - Standard of care
 - No access to TDF/FTC
 - Arm 1: Placebo
 - Arm 2: New systemic drug

	Experimental			
Control	New daily oral drug	New longer acting drug	New TDF/FTC dosing strategy	
Active: Daily TDF/FTC provided as a study drug	Scenario A	Scenario B	Scenario C	
Placebo add-on to daily TDF/FTC	Scenario D	Scenario E	Scenario F - N/A	
Placebo	Scenario G	Scenario H	Scenario I	

Populations: Current Efficacy Results

Study	Risk/Gender	Adherence	# of Events	Efficacy; 95% Cl
Partners PrEP Kenya, Uganda	Discordant heterosexual couples	~80%	13 vs. 52	75% (55%, 87%)
TDF2 Botswana	Heterosexual Men & Women	~80%	9 vs. 24	63% (22%, 83%)
iPrEx Peru, Brazil , Ecuador (82%)	MSM	~50%	48 vs. 83	42% (18%, 60%)
FemPrEP South Africa, Kenya (98%)	Heterosexual Women	~35%	33 vs. 35	6% (-69%, 41%)
VOICE South Africa (81%)	Heterosexual Women	To be reported	To be reported	To be reported

	Experimental			
Control	New daily oral drug	New longer acting drug	New TDF/FTC dosing strategy	
Active: Daily TDF/FTC provided as a study drug	Scenario A	Scenario B	Scenario C	
Placebo add-on to daily TDF/FTC	Scenario D	Scenario E		
Placebo	Scenario G	Scenario H	Scenario I	

Scenario A: Daily new drug vs. Daily TDF/FTC

- Example: Maraviroc vs. TDF/FTC in MSM
- Assumes daily TDF/FTC is a standard of care, and is provided by the study
- Non-inferiority trial
 - Requires high adherence to daily regimen
 - Requires strong evidence of efficacy of new agent, since some participants are not receiving TDF/FTC
 - Prohibitively large trial under alternative of 1.0; more feasible if new drug expected to be slightly better than TDF/FTC

	Experimental			
Control	New daily oral drug	New longer acting drug	New TDF/FTC dosing strategy	
Active: Daily TDF/FTC provided as a study drug	Scenario A	Scenario B	Scenario C	
Placebo add-on to daily TDF/FTC	Scenario D	Scenario E		
Placebo	Scenario G	Scenario H	Scenario I	

Scenario B: Longer Acting drug vs. Daily TDF/FTC

- Daily TDF/FTC assumed as standard of care
- Risk/benefit profile of longer acting drug
 - May have higher efficacy: better protection
 - Potential to preserve first line treatment drugs
 - May have more safety risk
- Superiority design justified if higher sustained drug levels
 - Example: Injectable vs. daily TDF/FTC in heterosexual women
 - Evidence of safety and potential for efficacy
 - Standard of care for maintaining adherence
- Non-inferiority design
 - Example: Longer acting vs. daily TDF/FTC in heterosexual couples
 - Requires safety and proof-of-concept for efficacy for new drug
 - Requires best real world achievable adherence
 - Feasibility of the trial depends on the margin set for non-inferiority (given setting where proven effective)

	Experimental			
Control	New daily oral drug	New longer acting drug	New TDF/FTC dosing strategy	
Active: Daily TDF/FTC provided as a study drug	Scenario A	Scenario B	Scenario C	
Placebo add-on to daily TDF/FTC	Scenario D	Scenario E		
Placebo	Scenario G	Scenario H	Scenario I	

Scenario C:

Alternate TDF/FTC dosing vs. Daily TDF/FTC

- Example: Coitally dependent vs. Daily TDF/FTC.
- Risk/Benefit
 - Likelihood of effectiveness for preventing HIV when exposed
 - Lower TDF/FTC exposure
- Non-inferiority setting
 - Establish alternate dosing strategy is acceptable alternative to daily
- Superiority of alternate dosing
 - Substantial reduction in HIV infections as a result of alternate (lower) dosing
- Priority only if non-daily dosing became a *de facto* standard of usage for TDF/FTC as PrEP

	Experimental			
Control	New daily oral drug	New longer acting drug	New TDF/FTC dosing strategy	
Active daily TDF/FTC control provided as a study drug	Scenario A	Scenario B	Scenario C	
Placebo add-on to daily TDF/FTC	Scenario D	Scenario E		
Placebo	Scenario G	Scenario H	Scenario I	

Control		Experimental		
		New daily oral drug	New longer acting drug	New TDF/FTC dosing strategy
TDF/F1	ve: Daily C provided tudy drug	Scenario A	Scenario B	Scenario C
Placebo add- on to daily	TDF/FTC is available	Scenario D	Scenario E	
TDF/FTC	TDF/FTC is provided by study			
Placebo		Scenario G	Scenario H	Scenario I

Scenarios D&E: Add-on new daily vs. TDF/FTC alone Add-on longer acting vs. TDF/FTC alone

- Placebo controlled trial, TDF/FTC available to all study participants
 - Option 1: TDF/FTC provided as a study drug
 - Example: TDF/FTC + maraviroc vs. TDF/FTC + placebo in women
 - Does not preserve first line treatment drugs
 - Option 2: TDF/FTC in (changing background) real-world PrEP
 - Example: Injectable active vs. Injectable placebo in US MSM
 - Assess actual TDF/FTC use and drug-drug interactions
 - Likely appropriate for HIV vaccine and microbicide products
- Superiority
 - Does not require daily TDF/FTC to be highly efficacious
 - Plausible that longer acting could be more efficacious
 - Context of trial determines most relevant question

	Experimental			
Control	New daily oral drug	New longer acting drug	New TDF/FTC dosing strategy	
Active: Daily TDF/FTC provided as a study drug	Scenario A	Scenario B	Scenario C	
Placebo add-on to daily TDF/FTC	Scenario D	Scenario E		
Placebo	Scenario G	Scenario H	Scenario I	

Scenarios G&H: New daily oral vs. placebo New longer acting vs. placebo

- Placebo possible where:
 - Community does not support TDF/FTC for PrEP but strong argument to support new drug
 - In a group unwilling or unable to take daily TDF/FTC
 - New drug needs to overcome these barriers
- Superiority design
 - Example: Injectable active vs. injectable placebo in FemPrEP-like population
 - Highest achievable adherence (long acting preferable)
 - Likely need to establish super-superiority (rule out less than 30% efficacy)

	Experimental			
Control	New daily oral drug	New longer acting drug	New TDF/FTC dosing strategy	
Active: Daily TDF/FTC provided as a study drug	Scenario A	Scenario B	Scenario C	
Placebo add-on to daily TDF/FTC	Scenario D	Scenario E		
Placebo	Scenario G	Scenario H	Scenario I	

Scenario I New TDF/FTC dosing vs. Placebo

- Example: Faster/longer acting TDF/FTC vs. placebo in FemPrEP-like population
- Superiority design
 - Daily TDF/FTC not practical or effective in a setting/population
 - Proof of concept that new dosing strategy will improve efficacy
 - Example:
 - Coitally dependent tenofovir gel effective in Caprisa 004;
 - Daily use of tenofovir gel not effective in VOICE

Conclusion

- Both superiority and non-inferiority designs are possible design paths
- Design enmeshed with context:
 - Existing evidence (population & selected comparison)
 - Best available knowledge of safety and potential efficacy for new drug
- Principle of distributed justice: studies need to address the greatest unmet need