Expanding Immune Monitoring in HBV Trials - Part I -

Adam J. Gehring, Ph.D.

Biology Lead Toronto Centre for Liver Disease University Health Network (UHN)

Assistant Professor Department of Immunology University of Toronto

Immunotherapeutic Strategies

Adaptive Immunotherapy

Mechanisms of T cell dysfunction

- 1. HBV-specific T cells are prone to apoptosis
 - a. Lopes, J Clin Invest 2008; 118: 1835–1845.
- 2. Co-express inhibitory receptors PD-1, CTLA-4, Tim-3
 - a. Nebbia, PLoS ONE 2012; 7: e47648.
 - b. Boni, J Virol 2007; 81: 4215–4225.
 - c. Schurich Hepatology. 2011; 53: 1494–1503
 - d. Bengsch, J. Hepatol. 2014 Dec;61(6):1212–9
 - e. Fisicaro Gastroenterology. 2010 Feb;138(2):682-93

3. Metabolic Dysfunction

a. Fisicaro Nat Med. 2017 Feb 6;23(3):327-36.

Therapeutic vaccines

- Increase magnitude of HBV-specific T cells
- Co-stimulation

Checkpoint Blockade

- Restore function & improve target recognition
- Increase magnitude ???

Antigen reduction

• Effect on immunity???

Goal: Increase adaptive anti-HBV immunity

How much increase is possible?

How much increase is needed? Magnitude? Function? Both?

Will vaccines provide sufficient coverage for genotypes?

Will there be Anti-HBs B cell recovery/stimulation?

Will Ag reduction restore T cell response? Combinations?

Immunotherapeutic Strategies

Innate Immunotherapy

Janssen et. al. J. Hepatol. 2017 Nov 2.

Innate immune activation works in mice

- Highly dependent on IFN-α
- Evidence for innate effector (NKT) activation

Bioavailability in humans

Oral delivery GS-9620 showed ISG15 induction

<u>Mechanism of action in patients?</u> Response in liver vs. data from blood? Direct effect...IFN-α/IFN-λ?

Indirect effect...NK/MAIT/γδ T cells? What population? What effector function?

Separate efficacy from toxicity?

Immune Biomarkers & Immune Monitoring

> If we are going to target immunity we need to be able to measure it

Most drugs have an immunological component

- Vaccines & Checkpoint blockade = T cells
- Innate immuno-modulators = cytokines & lymphocyte activation???
- siRNA/HBsAg inhibitors/nucleic acid polymers = reduce antigen > restore immunity???
- Capsid inhibitors = more core in hepatocytes > better T cell target???

Immunology relegated to later trials

Immunology has to be incorporated into early stage trials

Immune Biomarkers & Immune Monitoring

Immunology needs to be more efficient

- New drugs have 12/24w Tx window
- 550 ml blood/8w = 65 ml/w
 - Baseline visits and early pK studies use 200ml+
 - Iimits the critical baseline sample for immunology
 - Remaining blood used for pK, safety, new virological biomarkers

10 ml tube of whole blood = $8 - 12 \times 10^6$ PBMC

Myeloid Cells = 7* populations + phenotype

- 1. CD14+ MN
- 2. CD14/16+ MN
- 3. CD16+ MN
- 4. pDC
- 5. CD141+ mDC
- 6. CD1c+ mDC
- 7. *Neutrophils (whole blood)

Ph: CD80, CD86, CD40, CD83, PD-L1

10 ml tube of whole blood = $8 - 12 \times 10^6$ PBMC

T cell Inhibitory/activation (10⁶ cells)

CD4/CD8Phenotype

- +/- Tetramer
- CD38
- HLA-DR
- CD127
- 2B4
- PD-1
- CD160
- CD57
- KLRG1

10 ml tube of whole blood = $8 - 12 \times 10^6$ PBMC

Function (2x10⁶)

General Immune function

- TLR-2
- TLR-3
- TLR-4
- TLR-5
- TLR-7
- TLR-8
- RIG-I
- STING
- CD3/CD28

Multi-plex analysis

- customized panels
- Comprehensive Panels (>40 cytokines)

- 1. Flow cytometry with option to sort populations
- 2. Cytof for comprehensive analysis in single sample

2^{nd} - 10 ml tube of whole blood = $16 - 24 \times 10^6$ PBMC

Not routinely performed

- Reagents & technical expertise
- <10% detection in standard elispot

We have adapted elispot assay

· optimized: culture, stimulation, numbers

Total Ex vivo HBV-specific T cell Response (6x10⁶ cells) HBsAg-specific Memory B cells (2x10⁶ cells)

>70% +patients n=20/28

unpublished data

unpublished data

Feasibility

Broad immune monitoring with minimal demand for blood

- Complete profile of the immune populations in the peripheral blood
- Now possible to measure ex vivo HBV-specific T cell immunity using elispot in >70% patients
- Measuring HBs-specific B cell frequency now possible

Efficient Immuno-Profiling for Clinical Trials - The Liver -

Core biopsy - desirable but challenging

- Good cell numbers
- 3-dimensional architecture
- Immunology + virology assays

Safety and technology limit justification

5-10% hepatocytes

Fine Needle Aspirate Biopsy (FNAB)

- performed in clinic on regular visit
- 25 gauge spinal needle
- regular longitudinal sampling
 - little as 1 w between FNAB
- From liver to experiment in <1h
- Caveats No architecture and few hepatocytes

Efficient Immuno-Profiling for Clinical Trials - The Liver -

^{13.}Naïve CD4 T cells

Efficient Immuno-Profiling for Clinical Trials - The Liver -

10x Genomics 3' single-cell RNAseq

Input = 12,000 total cells (RBC depleted) 2,000 – 2,500 cells/sample

Longitudinal Sampling

- Patient stopping Tenofovir
- RNAseq on 2,200 total leukocytes & hepatocytes
- Non-overlapping transcriptional profiles

Combined Immune monitoring

- 1. Peripheral blood data Profile and HBV immunity
- 2. FNAB sub-study
 - a. See populations by flow cytometry
 - b. Measure change in function by RNAseq

Comprehensive picture of immunological response to therapeutic intervention

Summary

Need strategic immune monitoring to identify biomarkers to assess impact

- Need to know if immune drugs are working in vivo
 - Are hypothesized immune cells activated?
 - Does immune activation impact virological parameters?
- It is possible to do this with minimal blood.
 - ID points where can we get larger samples for deeper analysis, i.e. Leukapheresis
- Immune monitoring in early stage trials is valuable
 - Even data from negative trials will be informative immunologically
- Not restricted to immune-targeting drugs siRNA, Capsid inihibtors, NAPs, etc...

Toronto Center for Liver Disease

Gehring lab members

Deeqa Mahamed Aman Mehrotra Conan Chua Adrian Kuipery Michelle Yang Sonya Kim Steve Lee Alexandra Johnson-Valiente

Clinical Collaborators

Harry Janssen David Wong Jordan Feld Scott Fung

<u>Coordinators</u>

Danie La Jenny Chen

Princess Margaret Genomics Centre

Neil Winegarden Nick Khuu

