HBV Roadmap Update from Recent and EASL Presentations

HBV Forum pre-EASL 2018

Robert G Gish MD Adjunct Professor Stanford University Medical Director HB Foundation

Disclosures

• See robertgish.com

Introduction

- Aims
 - Understand recent and selected EASL Presentations that will help shape the roadmap to HBV elimination

- Objectives
 - Present data from EASL the may guide drug development and changes and updates in the global HBV elimination program

Where did the 140 M people with HBV go?

Current 2018 estimates of HBV Is 264 M HBsAg +

?2 Billion who are anti-HBc (+)

www.thelancet.com/gastrohep Published online March 26, 2018 http://dx.doi.org/10.1016/S2468-1253(18)30056-6

	Historical prevalence (%)	Modelled prevalence*	HBsAg-positive population, thousands*	Treated/treatment eligible† (%)	Diagnosed (%)‡	HBsAg prevalence in children aged 5 years*	HBsAg-positive population aged 5 years*	Prophylaxis coverage (%)			
								Three-dose vaccination before age 1year§	Timely birth dose§	HBIG and full vaccination¶	Antiviral treatment of mothers
WHO reg	ion										
AFRO	9-5%	7·2% (6·2-8·2)	78166 (68191-88606)	33700/21356000 (<1%)	1 486 000 (2%)	3·4% (3·0 to 3·9)	1046000 (940000-1209000)	80%	10%	0%	<1%
EMRO	3-0%	2-2% (1-9-3-0)	15565 (13041-20412)	68 900/4109 000 (2%)	1000000 (6%)	0-5% (0-4 to 0-7)	83000 (71100-118000)	85%	26%	7%	1%
EURO	2-0%	1·6% (1·1-2·1)	14 426 (9590-19 965)	268000/3940000 (7%)	2 274000 (16%)	0·1% (<0·1 to 0·2)	14800 (10100-24300)	82%	72%	14%	3%
PAHO	0-6%	0-4% (0-3-0-6)	3961 (2792-6492)	136000/1057000 (13%)	923000 (23%)	<0·1% (<0·1 to 0·1)	9200 (7300-16 400)	89%	67%	23%	4%
SEARO	4.0%	3-5% (2-9-4-0)	68948 (58382-79753)	109000/22290000 (<1%)	1462000 (2%)	1-5% (1-3 to 1-8)	540 000 (476 000-634 000)	89%	47%	2%	0%
WPRO	7.1%	5·7% (5·1-6-6)	108 672 (97 310-124 304)	3918000/40454000 (10%)	20268000 (19%)	0-5% (0-4 to 0-7)	116 000 (102 000-159 000)	97%	88%	54%	<1%
World Ba	nk region										
High income	1.1%	0-9% (0-7-1-1)	10307 (8469-12646)	873000/3578000 (24%)	4691000 (45%)	<0·1% (<0·1 to <0·1)	8700 (5800-11900)	85%	62%	71%	9%
Upper- middle income	4-8%	4-0% (3-5-4-7)	106829 (93070-123656)	3653000/38250000 (10%)	18007000 (17%)	0-2% (0-1 to 0-3)	74200 (61700-115000)	94%	86%	61%	<1%
Lower- middle income	5-3%	4·4% (3·8-5·2)	130891 (111825-154913)	151000/39609000 (<1%)	4475000 (3%)	2·0% (1·8 to 2·4)	1257 000 (1117 000-1487 000)	83%	37%	1%	<1%
Low income	8.1%	6·2% (5·3-7·0)	43 695 (38 008-49 538)	85600/12586000 (<1%)	1635000 (6%)	1·9% (1·7 to 2·2)	470 000 (422 000-547 000)	87%	3%	0%	<1%
Global	4-9%	3-9% (3-4-4-6)	291992 (251513-341114)	4762000/94043000 (5%)	28813000 (10%)	1·4% (1·2 to 1·6)	1811000 (1607000-2162000)	87%	46%	13%	<1%

HBIG-hepatitis B immunoglobulin. AFRO-Regional Office for Africa. EM RO-Eastern Mediterranean Regional Office. EURO-Regional Office for Europe. PAHO-Pan American Health Organization. SEA RO-South-East Asia Regional Office. WPRO-Western Pacific Regional Office. *Data are estimate (95% uncertainty interval). †Treatment eligible reflects the estimated number of HBsAg-positive individuals (diagnosed and undiagnosed) with a high viral load (>20 000 IU/mL) or with cirrhosis, hepatocellular carcinoma, or liver transplantation, independent of viral load. ‡The denominator in this column is the estimated HBsAg-positive population. \$Proportion of all infants. ¶Proportion of infants of HBsAg-positive mothers who received HBIG, first dose of hepatitis B vaccination <24 h after birth, and two or more doses of vaccine in the first year of life. ||Proportion of mothers with a high viral load who received antiviral therapy to reduce mother-to-child transmission.

Table 3: 2016 estimates of HBsAg infection prevalence, treatment, and prophylaxis, by WHO or World Bank region

Modeling is key: Polaris

Razavi, H., S147 (THU-057), S148 (THU-058), S149 (THU-059), S153 (THU-065), S153 (THU-067), S154 (THU-068), S155 (THU-069), S164 (THU-088), S165 (THU-089), S169 (THU-097), S172 (THU-103), S174 (THU-107), S176 (THU-111), S193 (THU-145), S308 (THU-397) Razavi-Shearer, D., S164 (THU-088), S165 (THU-089), S169 (THU-097) Razavi-Shearer-Spink, D., S147 (THU-057), S148 (THU-058), S153 (THU-067), S154 (THU-068), S155 (THU-069)

Screening and Diagnostics

First Level: The Patient

- POC/Rapid tests
 - Serologic tests <1\$
 - PCR at 18\$
- Policy
 - All adults?
 - Selected at risk ?
 - HBsAg only
 - Full panel
 - Anti-HBc, anti-HBs, HBsAg

Second Level: Drug Development

- qHBV RNA
 - Is this pgRNA
 - Integrants?
- HBV RNA sequencing
 - cccDNA
 - Integrants
- qHBcrAg
- Various particles, empty
- qHBeAg
- Anti-HBs, type and quant
- q-anti-HBc
- Deep sequencing of RNA in liver tissue
- Liver biopsy information on treatment
- FNA cell aspiration
- <mark>qHBxAg</mark>

Vaccination

- 2 dose vaccines
- Do we need anti-HBs to be protected?
- 12 hour birth dose
 - Do we need Nucs?

Table 1. Changes to vaccination coverage needed to meet WHO targets in 5 year olds

THU 097

		Base		WHO			
Country	3D Coverage (2014)	Treated Mothers (2014)	BD Coverage (2014)	BD Coverage3E (2025)) Coverage (2025)	Treated Mothers (2025)	
Burkina Faso	91.0%	0.0%	0.0%	99.0%	99.0%	80.0%	
Burundi	95.0%	0.0%	0.0%	74.3%	98.0%	52.5%	
Cameroon	87.0%	0.0%	0.0%	99.0%	99.0%	85.0%	
Central African Republic	23.0%	0.0%	0.0%	99.0%	99.0%	99.0%	
Chad	46.0%	0.0%	0.0%	74.3%	85.8%	74.3%	
Ethiopia	77.0%	0.0%	0.0%	95.0%	96.0%	75.0%	
Gabon	70.0%	0.0%	0.0%	99.0%	99.0%	65.0%	
Gambia	96.0%	0.0%	96.0%	99.0%	99.0%	99.0%	
Kenya	81.0%	0.0%	0.0%	81.0%	81.0%	0.0%	
Madagascar	73.0%	0.0%	0.0%	99.0%	99.0%	50.0%	
Malawi	91.0%	0.0%	0.0%	91.0%	91.0%	0.0%	
Nigeria	66.0%	0.0%	54.0%	***99.0%	99.0%	85.0%	
Rwanda	99.0%	0.0%	0.0%	99.0%	99.0%	0.0%	
Senegal	89.0%	0.0%	0.0%	99.0%	99.0%	80.0%	
Uganda	95.0%	3.0%	0.0%	99.0%	99.0%	70.0%	
Tanzania	97.0%	0.0%	0.0%	99.0%	99.0%	50.0%	
Zimbabwe	91.0%	0.0%	0.0%	99.0%	99.0%	75.0%	
Average	80.4%	0.2%	8.8%	91.7%	96.5%	62.0%	
Achievir	ng World Healt	h Organiza	ation Target	s for Henati	tis R in Infa	nt	

Achieving world Health Organization Targets for Hepatitis B in Infant and 5-year olds by 2030: Results from 17 WHO AFRO Countries Nde eet all

Linkage to care

HBV treatment

• Screening for stage of liver disease

• Surveillance for HCC and liver disease progression

Treatment

- Will we treat all HBsAg(+) regardless of HBV DNA status ?
- Current is Nuc suppression until HBsAg loss
 <10% at 5 year
- New selected treatments to follow

Summary of response to NAP-based combination therapy on-treatment and during follow-up

REP 301 / REP 301-LTF

Suboptimal REP 2139-Ca + pegIFN (only 15 weeks in combination) HBeAg negative treatment naïve chronic HBV / HDV co-infection

Patient	12	
End of	> 1 log below baseline	9
treatment HBsAg	< 1 IU/mL	6
response	<0.05 IU/mL	5
HDV RNA	> 5 log below baseline	12
response	target not detected	11
Patients o treatmer	11	
Н	4 (3 @ FW2Y)	
HB	6 (5 @ FW2Y)	
HDV RNA	7 (6 @ FW2Y)	

REP 401

REP 2139-Mg/REP 2165-Mg + TDF + pegIFN (48 weeks combination) HBeAg negative treatment naïve chronic HBV infection

Patier	nts entered into trial	40 (20 with NAPs following 24 weeks of pegIFN)		
End of	> 1 log from baseline	36		
treatment HBsAg	< 1 IU/mL	27		
response	< 0.05 IU/mL	23		
Patients curr and ≥ 1	33			
HBV DNA < 1000 IU/mL (repression)		25 (75%) (6 @ FW48)		
HBV DI	22 (65%) (5 @ FW48)			
	16 (2 @ FW48)			

replicor

Assembly Biosciences "Capsid Inhibitors" CpAMs - 2018 Roadmap

ABI-H0731 (1st Generation CpAM)

- Potent, selective and pangenotypic
- Derived from novel chemical series
- Phase 1a (volunteers) completed
 - Good safety and oral exposure
 - T½ of ~24 hr and minimal accumulation with repeat dosing
- Phase 1b (patients) ongoing
 - Good safety and efficacy exhibited
 - Interim data being presented at EASL (poster LB-012)
 - Phase 2a studies to initiate 3Q18

ABI-H2158 (2nd Generation CpAM)

- Enhanced potency and PK
- Derived from distinct and novel chemical series
- Phase 1a to initiate 4Q18

cPAMs, Capsid Core Inh

- Block assembly
- Missassembled
- Expedite degradation
- Block cccDNA regeneration

 But these Compounds will not stop HBsAg production

New class of non nucleoside inhibitors glyoxamidepyrrolamides (GLP)

HepAD38 system

Patent# WO2017156255 (A1) – Elimination of Hepatitis B Virus with Antiviral Agents.

- ✓ Inhibits HBVDNA replication $EC_{50/90} = 3/30$ nM
- ✓ Inhibits HBeAg secretion $EC_{50} = 3 \text{ nM}$
- ✓ Reduce cccDNA amplification by 1.3 log at 1 μ M
- ✓ Active in humaln privmary hepatocytes
 - ✓ Long stability ($T_{1/2}$ >24 h) in dog and human plasma
 - ✓ Good stability $(T_{1/2} = 7.6 \text{ h})$ in human liver microsomes
 - ✓ Long half life in mice after oral administration (> 6 hr)

MultiTargeted HBV Therapy in Action

Figure 1. GLP-26 Inhibits HBVDNA, Surface (sRNA) and pregenomic RNA (pgRNA) in HBV-Infected HepG2-NTCP Cells

Bassit EASL 2018

More on Combination THerapy

Parallel session: HBV cure: Pre-clinical studies South 4					
	Chairs: Julie LUCIFORA, France Stephen LOCARNINI, Australia				
16:00-16:15 PS-025	Combinatorial RNAi/vaccination therapy for chronic hepatitis B achieves long-term functional cure in preclinical mouse model Thomas MICHLER, <i>Germany</i>				
16:15-16:30 PS-026	Novel and potent HBV capsid modulator reduces HBeAg and cccDNA in core site directed T109I mutant in HepNTCP cells Leda BASSIT, United States				
16:30-16:45 PS-027	Preclinical antiviral drug combination studies utilizing novel orally bioavailable investigational agents for chronic hepatitis B infection: AB-506, a next generation HBV capsid inhibitor, and AB-452, a HBV RNA destabilizer Nagraj MANI, United States				
16:45-17:00 PS-028	Combination treatment of a TLR7 agonist RO7020531and a capsid assembly modulator RO7049389 achieved sustainable viral load suppression and HBsAg loss in an AAV-HBV mouse model Lu GAO, <i>China</i>				

Single>Combination Treatment

- Nuc +/- INF
- Nuc (INF) + iRNA
 - Arrowhead, ARB, Alnylam, GSK
- Nuc + anti-sense
- Entry Inh (Myr) + Capsid (Assembly, Enanta, many others), MABs
- CRISPR-Cas9 + Capsid
 - Others in class TALENS, editing
- iRNA + Capsid + immuneM?
- Drugs with multiple targets? GLP (Emory)
- DAA: RIG-I SB on encapsidation?
- cccDNA:
 - Breakdown
 - Edit
 - Stop synthesis

- RNA destabilizer (ARB)
- TLR7 + Capsid Inh (RO)
- Customized T-cell therapy
- Selective immunomodulation
 - Springbank RIG-I
- Release inhibitors ++?
 - REP compounds
- Immunomodulators +++?
 - Vaccine (Alnylam, Transgene, China groups, VacciTECH, others)
- Cellular targets +++ ?
 - FXR agonists (Enyo)
- PD1 PDL1 + ????
- HBxAg target
- RNA-ase H target

Special Populations

- Co-infection with HDV, HCV, HIV
- Dialysis
- Nuc suppressed
- ALT <20 in women
- ALT <30 in men

- All HBsAg+ patients
- Transplant patients
- Anti-HBc+, OBI, HBsAg mutants
- Immune suppressed

Need for partnership

- High need (3-4 partners)
 - Entry inhibitors
 - Release inhibitors
 - FXR
 - Therapeutic vaccines
 - TLR -8
 - T cell manipulation
 - Nucs
 - PEG Inf

- Moderate need (1-2 partners)
 - RIG –I Stim
 - iRNA
 - Capsid, pCAM

- Not going forward?
 - PD1 PDL1 antagonists

- Need more data
 - Anti-Sense RNA/DNA
 - CRISPR-Cas9
 - T-cell and other new immune technology

Goals of new combination therapy

- Oral >> SQ >> IV
- Treatment < 12 months
- sAg loss > 20% 50%
 with sustained DNA
 suppression, or "no go"
- sAg loss from both cccDNA and integrants

- AE profile <10% higher than Nucs
- AE profile < << INF
- Planned global price gradient
- Treat all patients who are HBsAg+

Endpoints

- HBsAg >0.5 log early
- HBsAg> 3 log by 3-6 months
- HBsAg loss 20-40% in < 1 year
- qHBeAg in HBeAg(+) patients

- Fall qHBV RNA
 Type of RNA
- Clear HBsAg from integrants
- HBxAg
- qHBcrAg
- q-cccDNA, tissue, blood?

<mark>Safety</mark>

- Do NAPS lead to sAg accumulation?
- Do cPAMS lead to core accumulation?
- iRNA: is there effect of gRNA, breakdown of iRNA, effect of RNA long term polyNuc?

- PDL1 and PD1: autoimmune
- Combination therapy too early, before full tox profiles finished
- Immune Immune collaborations?

Action items

- Accelerated birth dose vaccine programs (<12hours) eliminate cold chain, eliminate Nuc for mother, eliminate HBIG
- Robust screening algorithms
- Funding
 - GAVI for birth dose !
 - Govt
 - WHO
 - CDC and equivalents

- Accelerated
 - Diagnostic Test Approval
 - Applies to therapeutics
 - Drug development
 - Regulatory
 - Corporate
 - Investors
- Large companies have libraries
- Small companies need polygamy
- Minimize lawyers
- Production of drug/technology is it scalable

Recognition of the Real Roadmaps

- ICE HBV
- ANRS
- CEVAP
- WHO
- CDC
- HBV Forum
- Many others

Questions

