Association between HBsAg loss and long-term clinical outcome in chronic hepatitis B: a systematic review and meta-analysis

Ryan Taylor Anderson

Gilead Fellow The Forum for Collaborative Research

TORONTO CENTRE FOR LIVER DISEASE

Berke

Public

ILC Late-Breaker Poster LBP-02

- Abstract was accepted as a Late-Breaker Poster
 - Reference number: LBP-02
- Please respect that the data presented here is <u>confidential</u>
- Will be on display during all three poster sessions at ILC

Background

TORONTO CENTRE FOR

- Studies have shown an association between hepatitis B surface antigen (HBsAg) loss and improved long-term clinical outcomes in chronic hepatitis B (CHB) patients
- Evaluation of HBsAg seroclearance as a 'functional cure' on a larger scale is crucial for drug development and regulatory decision making

Objectives

TORONTO CENTRE FOR

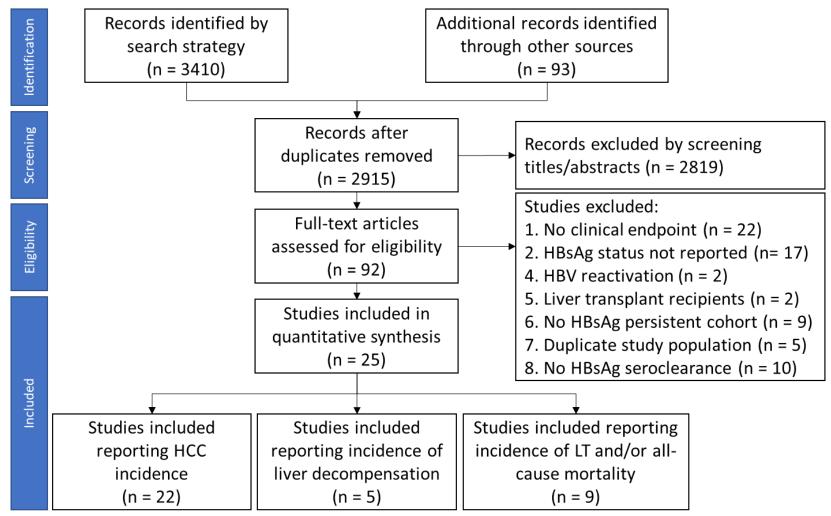
 To perform a systematic literature review and meta-analysis describing the association between functional cure (defined as HBsAg seroclearance with or without anti-HBs seroconversion) of CHB infection and long-term clinical outcome.

- Literature search in PubMed, EMBASE and Cochrane Library databases
- Full-text articles published in English between January 1990 – November 2018

- Inclusion criteria:
 - >50 CHB patients
 - ≥2 years of follow-up
 - HBsAg serostatus measured at baseline & during follow-up
 - Reported data on 1 or more long-term clinical outcomes (decompensation, HCC, liver transplantation (LT), and/or all-cause mortality)

TORONTO CENTRE FOR

- Exclusion criteria:
 - Study duplication
 - HBV reactivation studies
 - Studies on LT patients
 - Co-infection with HCV, HIV, and/or delta*
 - Included 4 studies with minority subpopulations of co-infected individuals
 - Clinical events reported prior to HBsAg loss
 - No HBsAg-persistent comparison cohort
 - Zero clinical events reported for both cohorts



- Two investigators independently extracted and reviewed study data
- Comprehensive Meta-analysis Software was used to perform statistical analysis
 - Clinical events rates (number of clinical events in cohort/person-years follow-up in cohort) were
 used to calculate the rate ratio (RR) using a random effects model
 - Reciprocal continuity correction factors used for studies reporting zero-events for the HBsAg-loss cohort¹
 - Patient population demographic characteristics were categorized and analyzed in sub-group (Q-test for heterogeneity) and sensitivity analyses
 - General study information was used as covariates in a meta-regression analysis

Study Selection Flow Chart

"First Clinical Event" Endpoint

- Composite endpoint of the first reported adverse clinical event
 - Decompensation, HCC, liver transplant, or death

First Clinical Event: Meta-Analysis

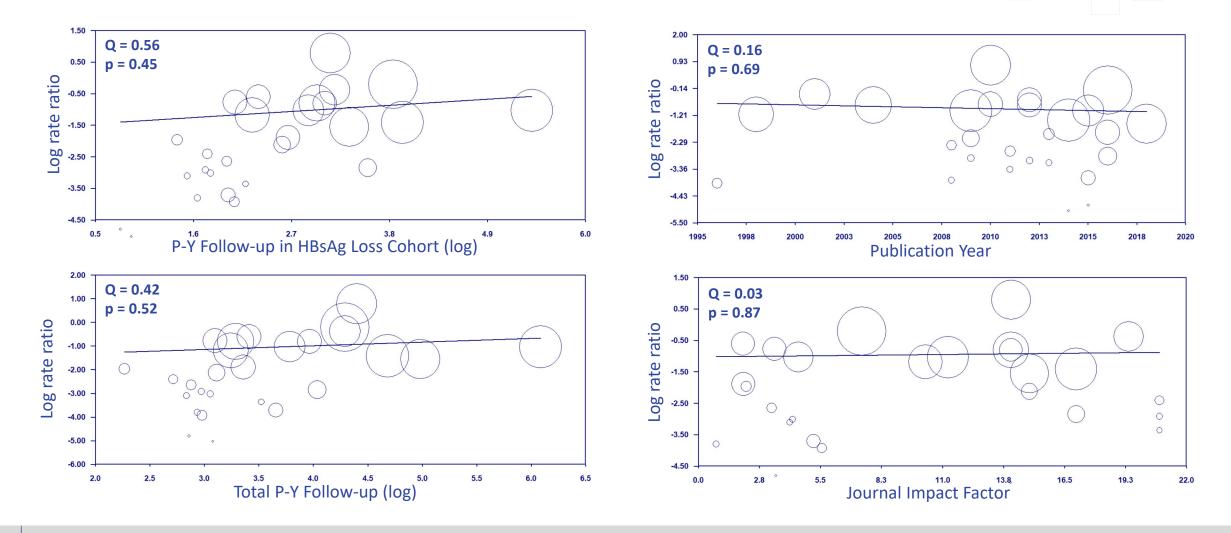
Study	RR	Lower limit	Upper limit	p-value	RR and 95% CI					
					0.01 0.1 1.0 10.0 100.	0				
Liang et al., 2015	0.008	0.000	1.7E+07	0.661						
Sun et al., 2014	0.007	0.000	1.6E+08	0.681						
Takkenberg et al., 2013	0.141	0.001	18.739	0.433						
Yang et al., 2013	0.045	0.000	242.785	0.480	k • }					
Kim et al.,2008	0.022	0.000	104.488	0.378	k • 					
Marcellin et al., 2009	0.054	0.000	153.848	0.473	K •					
Buster et al., 2008	0.090	0.000	24.296	0.400						
Idilman et al., 2012	0.049	0.000	172.968	0.470	k • − − →					
Chan et al., 2011	0.071	0.000	13.176	0.321	← • 					
Orito et al., 2015	0.025	0.001	0.971	0.048	← •					
Silva et al., 1996	0.020	0.000	4.044	0.149	K •					
Psvedos et al., 2010	0.465	0.063	3.456	0.454						
Tseng et al., 2011	0.035	0.000	260.315	0.461	K ● 					
Fattovich et al., 1998	0.309	0.098	0.978	0.046						
Arai et al., 2012	0.553	0.074	4.119	0.563						
Moucari et al., 2009	0.121	0.006	2.527	0.173	<u>← </u>					
Yang et al., 2016	0.152	0.021	1.123	0.065						
Lauret et al., 2015	0.360	0.087	1.494	0.159						
Yuen et al., 2004	0.452	0.157	1.300	0.141						
Tseng et al., 2012	0.451	0.060	3.412	0.440						
Yip et al., 2018	0.213	0.089	0.514	0.001						
Lim et al., 2016	0.059	0.003	0.992	0.049	₭───┤					
Gounder et al., 2016	0.821	0.614	1.097	0.182						
Liu et al., 2014	0.245	0.120	0.500	0.000						
Fwu et al., 2009	0.358	0.173	0.738	0.005						
Overall	0.341	0.233	0.499	0.000						

First Clinical Event: Meta-Analysis

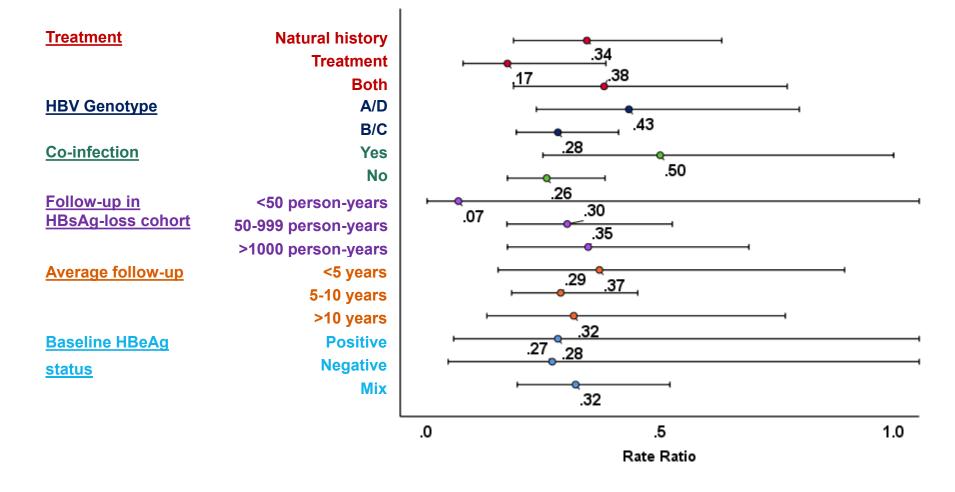
	Study	RR	Lower limit	Upper limit	p-value	RR and 95% CI				
	Study	кň				0.01	0.1	1.0	10.0	100.0
	Liang et al., 2015	0.008	0.000	1.7E+07	0.661	Ť				ļ
	Sun et al., 2014	0.007	0.000	1.6E+08	0.681	<u> </u>				
	Takkenberg et al., 20	013 0.141	0.001	18.739	0.433					
	Yang et al., 2013	0.045	0.000	242.785	0.480	(
	Kim et al.,2008	0.022	0.000	104.488	0.378	- +				
	Marcellin et al., 2009	9 0.054	0.000	153.848	0.473	K				
	RR Lo	wer	Uppe	r n-	value					
	li	mit	limit	Ρ-	value			_	_	
Overall	0.341 0.	233	0.499) ()	.000		•	-0	-	
	Fattovich et al., 1998	8 0.309	0.098	0.978	0.046	1		<u> </u>		
	Arai et al., 2012	0.553	0.074	4.119	0.563		+		-	
	Moucari et al., 2009		0.006	2.527	0.173	K –	•	-+		
	Yang et al., 2016	0.152	0.021	1.123	0.065	-				
	Lauret et al., 2015	0.360	0.087	1.494	0.159					
	Yuen et al., 2004	0.452	0.157	1.300	0.141			-0-+		
	Tseng et al., 2012	0.451	0.060	3.412	0.440		+		-	
	Yip et al., 2018	0.213	0.089	0.514	0.001		+-0-	-		
	Lim et al., 2016	0.059	0.003	0.992	0.049	K				
	Gounder et al., 2016	0.821	0.614	1.097	0.182					
	Liu et al., 2014	0.245	0.120	0.500	0.000		_			
	Ewulet al. 2009	0 358	0 173	0 738	0.005			<u>p</u> —		
	Overall	0.341	0.233	0.499	0.000					

TORONTO CENTRE FOR LIVER DISEASE

Primary Clinical Endpoints: Independent Metaanalyses

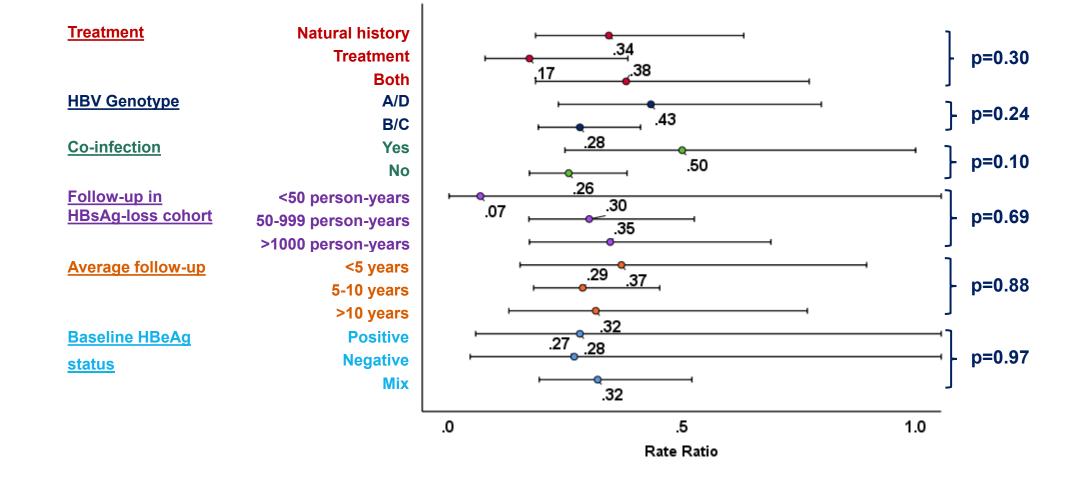

Endpoint	RR	Lower	Upper limit	p-value	RR and 95% CI				
	ΝN	limit			0.0	0.5	1.0		
Decompensation (n=5)	0.313	0.150	0.654	0.002		· · · · · · · · · · · · · · · · · · ·			
HCC (n = 22)	0.307	0.214	0.440	0.000		. <u></u>			
LT/All-cause Mortality (n = 9)	0.751	0.569	0.991	0.043		.31			
First Clinical Event (N = 25)	0.341	0.233	0.499	0.000		•.34 .75			

First Clinical Event: Regression Analysis

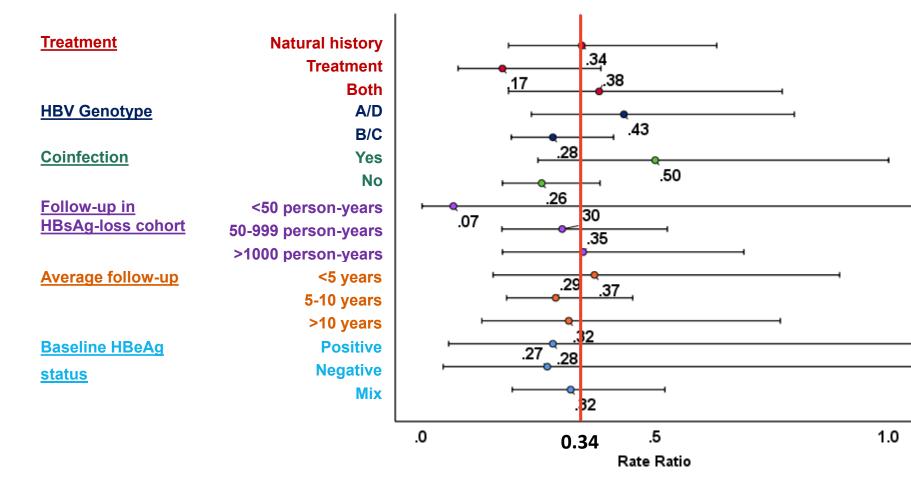


TORONTO CENTRE FOR

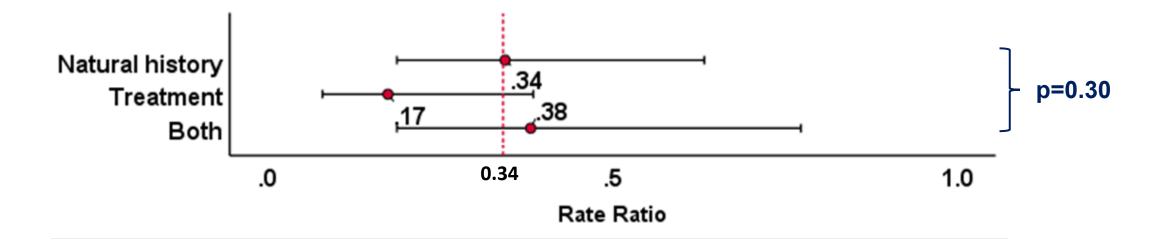
First Clinical Event: Subgroup/Sensitivity Analysis



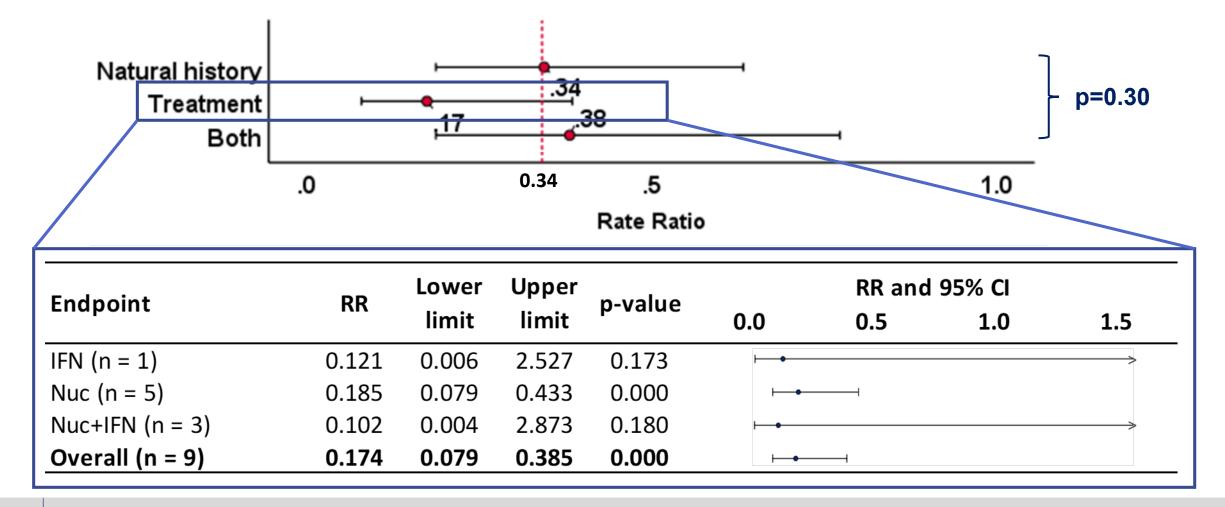
TORONTO CENTRE FOR


First Clinical Event: Subgroup Analysis

First Clinical Event: Sensitivity Analysis



First Clinical Event: Treatment Subgroups




First Clinical Event: Treatment Studies Sub-analysis

Conclusion

- Significantly reduced risk of adverse clinical events in patients who achieved HBsAg loss
- No difference in incidence of long-term clinical outcome between patients who cleared HBsAg on-treatment and those who cleared HBsAg spontaneously

Next Steps

- We have reached out to corresponding authors for additional 15 articles that fulfilled our inclusion criteria, but did not differentiate endpoints based on HBsAg status
- Manuscript for peer review publication in preparation

Thank you!

Study Co-authors

- Hannah Choi, MS, Toronto Centre for Liver Disease, University Heath Network
- Oliver Lenz, PhD, Janssen
- Marion Peters, MD, UCSF
- Harry Janssen, MD, PhD, Toronto Centre for Liver Disease, University Health Network
- Veronica Miller, PhD, *The Forum for Collaborative Research*
- Bettina Hansen, *IHPME, University of Toronto*

Surrogate Endpoints WG Members

- Ibronke Addy, MBBS, MSc, AiCuris
- Nat Brown, MD, Hepatitis B Foundation
- Henry Chan, MD, The Chinese University of Hong Kong
- Gavin Cloherty, PhD, Abbott

TORONTO CENTRE FOR

- Eric Donaldson, PhD, US FDA
- Geoffrey Dusheiko, MD, University College London
- Robert Gish, MD, Robert Gish Consultants

- Michael Hombach, MD, Roche
- Maureen Kamischke, BA, Hepatitis B Foundation
- Pietro Lampertico, MD, PhD, University of Milan
- Uri Lopatin, MD, Assembly
- Eduardo Martins, MD, Dphil, Bruno Martins Consulting LLC
- Brian McMahon, MD, Alska Native Medical Center
- Poonam Mishra, MD, *US FDA*
- Charu Mullick, MD, US FDA
- Jeffrey Murray, MD, MPH, US FDA
- Michael Ninburg, MPA, Hepatitis Education Project
- Sandra Palleja, MD, PPD
- Daniela Paulson, AiCuris
- Jean-Michel Pawlotsky, MD, PhD, Henri Mondor University Hospital
- Ross Leland Pierce, MD, US FDA
- Sybil Tasker, MD, MPH, Altimmune
- Andrew Vaillant, PhD, *Replicor*
- Hwai-I Yang, PhD, Academia Sinica

HBV Forum Sponsors

- Abbott Molecular
- Altimmune
- Arbutus Biopharma
- Arrowhead Pharmaceuticals
- Assembly Biosciences
- AstraZeneca
- ContraVir
- DDL Diagnostics
- Gilead Sciences
- GlaxoSmithKline,
- Hepatitis B Foundation
- Janssen
- MEDIAN Technologies
- Novartis,
- PPD
- Quest Diagnostics
- Roche Molecular Systems
- Springbank Pharma

For Collaborative Researc