

HBsAg Loss Meta-Analysis

Hannah Choi

Toronto Centre for Liver Disease

Association between HBsAg loss and risk of hepatocellular carcinoma in chronic hepatitis B: a systematic review and meta-analysis

Hannah S.J. Choi

PhD Candidate

Toronto Centre for Liver Disease, University Health Network

3 FORUM FOR COLLABORATIVE RESEARCH CATALYZING CLINICAL RESEARCH TO IMPROVE GLOBAL HEALTH

- Background
- Loss of hepatitis B surface antigen (HBsAg): desired treatment endpoint for chronic hepatitis B (CHB)
- Studies have shown an association between HBsAg loss and improved long-term clinical outcomes in CHB patients
- Its utility as a surrogate endpoint needs to be well-described for development of novel therapies and regulatory decision making

- To describe the association between HBsAg loss and HCC development
- To evaluate HBsAg loss as a surrogate endpoint for improved long-term clinical outcome in CHB

Berk

Methods

- Systematic literature review conducted in PubMed, EMBASE, and Cochrane Library databases for articles published between Jan 1990-Nov 2018
- Inclusion criteria:
 - >50 CHB patients
 - ≥2 years of follow-up
 - Measured for serum HBsAg status at baseline and during follow-up
 - Reported data on HCC

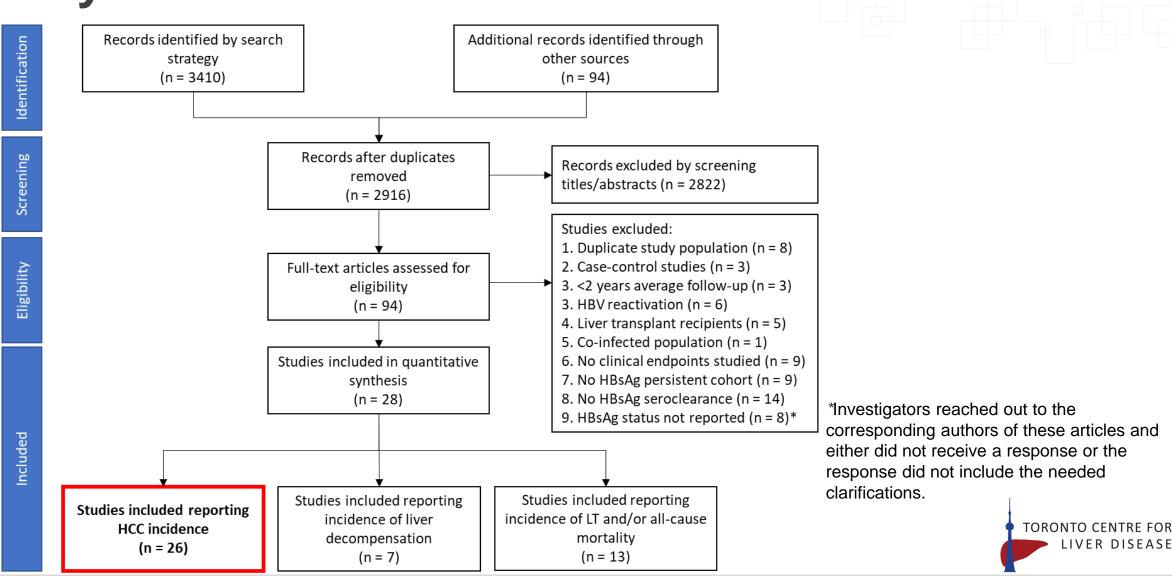
5 FORUM FOR COLLABORATIVE RESEARCH CATALYZING CLINICAL RESEARCH TO IMPROVE GLOBAL HEALTH

Methods

Exclusion criteria:

- Duplicate study population
- HBV reactivation
- Liver transplant recipients
- No clinical endpoint studied
- No HBsAg loss/HBsAg-persistent cohort for comparison
- HCC prior to HBsAg loss
- HCV/HDV/HIV coinfected population
- Case-control studies

Ber



- Incidence rates of HCC from HBsAg loss and HBsAg-persistent groups used to calculate rate ratios (RR)
 - HCC incidence rate= number of HCC in cohort/total person-years of follow-up in cohort)
 - Reciprocal continuity correction factors used for studies reporting zero events in the HBsAg loss cohort¹
- Meta-analysis of RRs using a random effects model performed
- Subgroup and sensitivity analyses conducted to test robustness of results

TORONTO CENTRE FOR LIVER DISEASE

¹Sweeting, *Statistics in Medicine* (2014)

Study selection flow chart

LIVER DISEASE

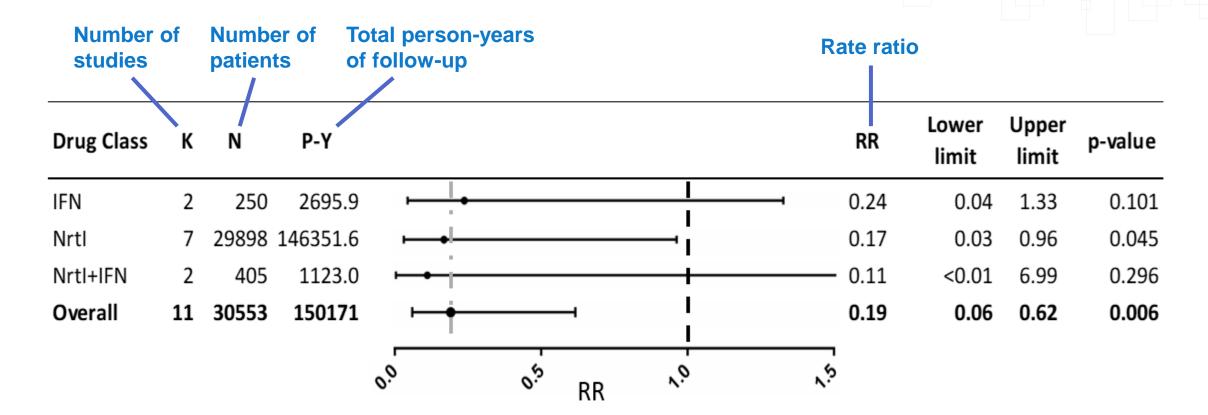
For Collaborative Research

HCC Meta-analysis

Study	n ^{srdr}	P-Y ^{srdr}	n ^{prstnt}	P-Y ^{prstnt}	RR and 95% CI				RR	Lower	Upper	p-value	Weight	
					0.01	0.1	1.0	10.0	100.0		limit	limit	pvalue	Weight
Sun et al., 2014	4	8.0	595	1190.0	\leftarrow				\rightarrow	0.01	< 0.01	1.6E+08	0.681	0.03%
Takkenberg et al., 2013	13	26.0	79	158.0	\leftarrow	0	<u> </u>			0.14	< 0.01	18.74	0.433	0.62%
Yang et al., 2013	6	33.8	115	646.9	\leftarrow	0	<u> </u>		\longrightarrow	0.05	< 0.01	242.78	0.480	0.20%
Kim et al.,2008	11	44.0	204	816.0	~~		<u> </u>		\rightarrow	0.02	< 0.01	104.49	0.378	0.21%
Marcellin et al., 2009	18	54.0	295	885.0	\leftarrow	•	<u> </u>		\rightarrow	0.05	< 0.01	153.85	0.473	0.24%
Idilman et al., 2012	10	61.8	173	1069.7	\leftarrow	-0			\rightarrow	0.05	< 0.01	172.97	0.470	0.22%
Chan et al., 2011	12	94.0	91	659.8	(0.07	< 0.01	13.18	0.321	0.54%
Orito et al., 2015	13	97.5	589	4417.5	é				\longrightarrow	0.01	< 0.01	6.5E+03	0.512	0.09%
da Silva et al., 1996	20	114.0	164	836.4	\leftarrow	-0				0.05	< 0.01	10.12	0.268	0.52%
Tseng et al., 2011	18	153.0	372	3162.0	\leftarrow	0			\rightarrow	0.03	< 0.01	260.31	0.461	0.19%
Fattovich et al., 1998	32	181.3	277	1569.7			0			0.29	0.04	2.12	0.221	3.46%
Arai et al., 2012	25	212.9	398	2354.2				_		0.55	0.07	4.12	0.563	3.41%
Buti et al., 2015	62	310.0	634	3170.0	(•				0.04	< 0.01	24.05	0.333	0.38%
Brouwer et al., 2016	43	335.4	249	1942.2	\leftarrow					0.13	< 0.01	15.11	0.399	0.65%
Moucari et al., 2009	28	392.0	69	897.0	\leftarrow	•				0.12	0.01	2.53	0.173	1.56%
Zonneveld et al., 2004	38	429.4	115	977.5				-		0.33	0.04	2.64	0.293	3.15%
Yang et al., 2016	37	456.8	181	1810.0	_	0	<u> </u>			0.15	0.02	1.12	0.065	3.44%
Cho et al., 2014	165	566.5	1981	6801.8						1.12	0.59	2.15	0.728	18.99%
Fung et al., 2014	45	645.0	730	13930.8	~ —		<u> </u>		\rightarrow	0.01	< 0.01	128.34	0.360	0.18%
Lauret et al., 2015	78	772.2	534	5286.6				_		0.53	0.07	4.03	0.537	3.33%
Kim et al., 2014	110	1078.0	5299	31794.0	\leftarrow	o	i i			0.04	0.01	0.29	0.001	3.56%
Yip et al., 2018	376	2218.4	19887	93568.3			I			0.12	0.03	0.47	0.002	6.54%
Lim et al., 2016	145	3591.6	293	7257.4	\leftarrow	-0				0.06	< 0.01	0.99	0.049	1.80%
Tseng et al., 2015	338	4155.1	1783	21918.5		— <u>C</u>	⊢ ı			0.22	0.09	0.55	0.001	12.82%
Liu et al., 2014	529	8759.5	2417	38939.6						0.25	0.12	0.50	0.000	17.11%
Eway of al., 2009	21099	249242.0		065752.0						0.36	0.17	0.74	0.005	16 77%
OVERALL	33264	273032.3	154519	1211810.9		•	•			0.30	0.20	0.43	<0.001	100.00%

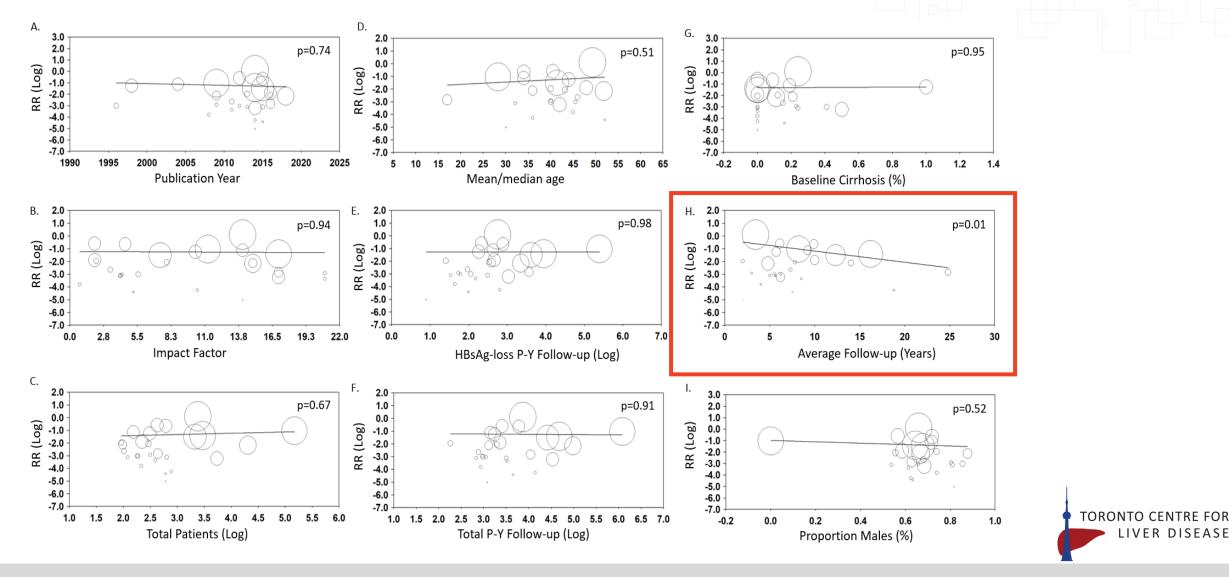
TORONTO CENTRE FOR

9 FORUM FOR COLLABORATIVE RESEARCH CATALYZING CLINICAL RESEARCH TO IMPROVE GLOBAL HEALTH


Berkeley Public Health

	roup ana				Total person-years	Rate rat	tio		
	studies				of follow-up				
Variable	Subgroup	к	patien N	P-Y		RR	Lower limit	Upper limit	p-value
Study Design	<u>ו</u>				- I				
	Retrospective	18	182465	1416301.5		0.27	0.16	0.48	<0.001
	Prospective	8	5318	68541.7		0.23	0.12	0.44	<0.001
Cohort type									
	Untreated	12	155534	1312287.0		0.26	0.17	0.39	<0.001
	Treated	11	30553	150170.5		0.19	0.06	0.63	0.006
	Both	3	1696	22385.6		0.36	0.09	1.46	0.152
Genotype					1				
	A/D	10	3056	29378.3		0.22	0.08	0.56	0.002
	B/C	16	184727	1455464.9		0.27	0.15	0.48	<0.001
Co-infected	subpopulation				I I				
	Yes	3	148485	1217211.2		0.31	0.16	0.62	0.001
	No	23	39298	267631.9		0.27	0.16	0.44	< 0.001
HBeAg Statu	s at Baseline								
	(+)	5	1184	9258.7	·	0.31	0.09	1.11	0.073
	(-)	6	3787	45751.3		0.20	0.09	0.47	< 0.001
	Mix	15	182812	1429833.2		0.26	0.14	0.48	<0.001
	•• • • • • • • • • • • • • • • • • • • •				overall of RR				

Sub-analysis of treatment studies



Health

Berkel

Meta-regression sensitivity analysis

12 FORUM FOR COLLABORATIVE RESEARCH CATALYZING CLINICAL RESEARCH TO IMPROVE GLOBAL HEALTH

Berkeley Health

Sensitivity analysis: Average follow-up


- Average follow-up duration was the only factor that had a significant influence on the rate ratio
- Magnitude of HCC risk reduction associated with HBsAg loss increased with increasing follow-up duration
- Excluding studies with <5 or >10 years of follow-up mitigated this effect; however, the trend persisted

TORONTO CENTRE FOR LIVER DISEASE

Conclusion

- HBsAg loss was strongly associated with a significantly reduced risk of HCC
- Both spontaneous and treatment-induced HBsAg loss were associated with reduced risk of HCC, regardless of treatment type
- Although the degree of risk reduction may differ, the positive effect associated with HBsAg loss persisted through all patient subpopulations
- Achieving HBsAg loss is a reliable measure of tangible clinical benefit
- Our results provide validation for the use of HBsAg loss as a surrogate endpoint for HCC risk reduction and improved clinical outcome in CHB patients

Acknowledgement

- Study Co-authors
 - Ryan Taylor Anderson, MS, MPH, The Forum for Collaborative Research
 - Oliver Lenz, PhD, Janssen
 - Marion Peters, MD, UCSF
 - Harry Janssen, MD, PhD, Toronto Centre for Liver Disease, University Health Network
 - Poonam Mishra, MD, MPH, US Food and Drug Administration
 - Eric Donaldson, PhD, US Food and Drug Administration
 - Stephanie Buchholz, Federal Institute for Drugs and Medical Devices
 - Gabriel Westman, *Medical Products Agency*
 - Veronica Miller, PhD, The Forum for Collaborative Research
 - Bettina Hansen, *IHPME, University of Toronto*

Surrogate Endpoints WG Members

- Ibronke Addy, MBBS, MSc, AiCuris
- Nat Brown, MD, Hepatitis B Foundation
- Henry Chan, MD, The Chinese University of Hong Kong

- Gavin Cloherty, PhD, Abbott
- Eric Donaldson, PhD, US FDA
- Geoffrey Dusheiko, MD, University College London
- Robert Gish, MD, Robert Gish Consultants
- Michael Hombach, MD, Roche
- Maureen Kamischke, BA, Hepatitis B Foundation
- Pietro Lampertico, MD, PhD, University of Milan
- Uri Lopatin, MD, Assembly
- Eduardo Martins, MD, Dphil, Bruno Martins Consulting LLC
- Brian McMahon, MD, Alska Native Medical Center
- Poonam Mishra, MD, US FDA
- Charu Mullick, MD, US FDA
- Jeffrey Murray, MD, MPH, US FDA
- Michael Ninburg, MPA, Hepatitis Education Project
- Sandra Palleja, MD, PPD
- Daniela Paulson, *AiCuris*
- Jean-Michel Pawlotsky, MD, PhD, Henri Mondor University Hospital
- Ross Leland Pierce, MD, US FDA
- Sybil Tasker, MD, MPH, Altimmune

- Andrew Vaillant, PhD, Replicor
- Hwai-I Yang, PhD, Academia Sinica

HBV Forum Sponsors

- Abbott Molecular
- Altimmune
- Arbutus Biopharma
- Arrowhead Pharmaceuticals
- Assembly Biosciences
- AstraZeneca
- ContraVir
- DDL Diagnostics
- Gilead Sciences
- GlaxoSmithKline,
- Hepatitis B Foundation
- Janssen
- MEDIAN Technologies
- Novartis,
- PPD
- Quest Diagnostics
- Roche Molecular Systems
- Springbank Pharma

TORONTO CENTRE FOR

For Collaborative Resear