Key findings leading to the discontinuation of a Capsid Inhibitor (CI), AB-506, in Healthy Subjects (HS) and Chronic Hepatitis B (CHB) Subjects

KD Sims¹, E Gane², MF Yuen³, E Berliba⁴, W Sukeepaisarnjaroen⁵, SH Ahn⁶, T Tanwandee⁷, YS Lim⁸, YJ Kim⁹, K Poovorawan¹⁰, P Tangkijvanich¹¹, H LY Chan¹², J Brown¹, C Moore¹³, N Mani¹³, R Rijnbrand¹³, A Cole¹³, M Sofia¹³, E Thi¹³, J Kim¹³, T Eley¹, A CH Lee¹³, G Picchio¹.

(1)Clinical Development, Arbutus Biopharma, Warminster, PA, USA; (2)New Zealand Liver Transplant Unit, Auckland City Hospital, Auckland, New Zealand; (3)University of Hong Kong, Queen Mary Hospital, Hong Kong; (4)Arensia Exploratory Medicine, Chisinau, Moldova; (5)Khon Kaen University, Srinagarind Hospital, Thailand; (6)Gastroenterology, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea; (7)Gastroenterology, Siriraj Hospital, Bangkok, Thailand; (8)Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; (9)Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital; (10)Tropical Medicine, Mahidol University, Hospital of Tropical Diseases, Thailand; (11)Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; (12)Institute of Digestive Disease, Department of Medicine and Therapeutics, and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong; (13)Discovery, Arbutus Biopharma, Warminster, PA, USA

Introduction

- HBV capsid inhibitors (CI) are being studied as potential components of new combination regimens for the treatment of chronic hepatitis B (CHB) infection.
- Mechanistically, CI inhibit HBV replication by preventing the encapsidation of pre-genomic RNA and replenishment of the cccDNA pool.
- In the context of HBV drug development, distinguishing between host-induced ("good") and drug- or viral-induced ("bad") transaminase flares is challenging considering the natural history of CHB infection.
 - Multiple dose studies in healthy subjects (HS) are rarely conducted longer than 7-14 days to assess the potential for drug toxicity before dosing the target population
- AB-506 is an oral, class II, selective HBV CI for the treatment of CHB with activity against genotypes
 A-H and nucleos(t)ide resistant variants in vitro which, until recently, was in clinical development for the treatment of CHB
- This presentation summarizes one year of AB-506 clinical development and underscores the importance of taking the necessary steps to fully characterize the occurrence of transaminase flares

Background

- No transaminase elevations were noted in 28-day or 90-day AB-506 toxicology studies.
- Here we report data from the first-in-human study of AB-506 (AB-506-001) and a follow-on study to evaluate potential safety observations (AB-506-003).

Study AB-506-001: Study design and inclusion criteria

Primary Objective:

Safety and tolerability of single and multiple doses of AB-506 in HS (10 days) and DNA+ CHB Subjects (28 days)

All Subjects:

 Capable of giving signed informed consent, able to understand and comply with protocol requirements, instructions, and protocol-related restrictions, and likely to complete the study as planned

Healthy Subjects:

- Healthy males or females aged 18 to 45 years
- Body mass index (BMI) ≥18 kg/m2and ≤32 kg/m2
- No history of clinically significant gastrointestinal, hematologic, renal, hepatic, bronchopulmonary, neurological, psychiatric, or cardiovascular disease
- No clinically significant abnormalities in laboratory test results, ECGs or vital sign measurements

CHB Subjects:

- Healthy males or females aged 18 to 65 years
- Body mass index (BMI) ≥18 kg/m2and ≤38 kg/m2
- Documented chronic HBV infection (HBsAg positive > 6 months and negative HBcAb-lgM)
- HBV-DNA ≥2,000 IU/mL (HBeAg-negative) or ≥20,000 IU/mL (HBeAg-positive); HBsAg ≥250 IU/mL
- HBV genotype A, B, C, or D
- No evidence of cirrhosis, advanced fibrosis or HCC via Fibroscan(<10 kPa) and ultrasound
- ALT or AST ≤5 ×upper limit of normal (AASLD criteria for ALT)

Study AB-506-001: Baseline characteristics

Healthy Subject Baseline Characteristics

Baseline Measure	Cohort A Single Doses (N=11)	Cohort B Single Doses (N=10)	Cohort C Multiple Dose (N=12)	Overall (N=33)
Age (years) [Mean (SD)]	26.2 (6.7)	27.5 (6.5)	24.8 (4.3)	26.1 (5.8)
BMI (kg/m²) [Mean (SD)]	25.2 (2.2)	26.4 (3.4)	24.1 (2.4)	25.2 (2.8)
Male Gender [n (%)]	11 (100)	10 (100)	12 (100)	33 (100)
Race [n]	_		_	
Asian	0	2	1	3
White	7	4	7	18
Pacific Islander	0	2	0	2
Other	4	2	4	10
Baseline ALT [Mean (SD)]	18.5 (4.1)	27.5 (9.3)	19.1 (8.6)	21.5 (8.5)

CHB Subject Baseline Characteristics

Baseline Measure	Cohort D 400 mg QD (N=10)	Cohort E 160 mg QD (N=10)	Pooled PBO (N=4)
Age (years) [Mean (SD)]	41.7 (9.5)	41.3 (12.4)	40.8 (9.3)
Male Gender [n (%)]	5 (50)	5 (50)	0
BMI [Mean (SD)]	23.4 (3.5)	25.5 (5.6)	25.8 (2.4)
Race [n (%)]	_	_	
Asian	8	5	2
White	1	5	2
Pacific Islander	1	0	0
Other	0	0	0
Genotype [n, (%)]			
А	0	0	0
В	2	0	0
С	7	5	2
D	1	5	2
HBV eAg Positive [n, %]	3	7	2
ALT (U/L) Mean (SD)]	37.1 (20.3)	27.9 (17.2)	28.1 (11.6)
HBV DNA (Log ₁₀ IU/mL) [Mean (SD)]	6.99 (2.11)	5.21 (1.43)	5.40 (2.18)
HBV RNA (Log ₁₀ IU/mL) [Mean (SD)]	5.90 (2.12)	4.68 (1.29) ^a	5.37 (1.99) ^b
HBsAg (Log ₁₀ IU/mL) [Mean (SD)]	4.23 (0.66)	3.62 (0.56)	3.52 (0.60)

⁽a) 3 subjects TND; (b) 2 subjects TND

HBV DNA, HBV RNA and HBsAg changes at day 28

Cohort	Cohort D 400 mg QD ^a		Cohort E 160 mg QD			Pooled PBO	
HBeAg Status [Treated]	HBeAg+ [N=7]	HBeAg- [N=3]	ALL [N=10]	HBeAg+ [N=3]	HBeAg- [N=7]	ALL [N=10]	ALL [N=4]
HBV DNA (Log ₁₀ IU/mL) [Mean (SD)]	-2.9 (0.58)	-2.5 ^b (0.23)	-2.8 (0.57)	-2.2 (0.39)	-2.0 (1.1)	-2.1 (0.91)	-0.045 (0.16)
HBV RNA (Log ₁₀ IU/mL) [Mean (SD)]	-2.4 (0.50)	All ^c <lloq< td=""><td>-2.4 (0.50)</td><td>-2.5^d (0.54)</td><td>-2.22^e</td><td>-2.37 (0.40)</td><td>0.066 (0.19)</td></lloq<>	-2.4 (0.50)	-2.5 ^d (0.54)	-2.22 ^e	-2.37 (0.40)	0.066 (0.19)
HBsAg (Log ₁₀ IU/mL) [Mean (SD)]	0.116 (0.208)	0.107 (0.001)	0.113 (0.176)	-0.0213 (0.029)	-0.0214 (0.082)	-0.0213 (0.069)	0.006 (0.07)

⁽a) 2 subjects DC for ALT excluded; (b) 1 subject <LLOQ; (c) 1 <LLOQ at baseline; (d) N=2 (1 <LLOQ by Day 28); (e) N=1 (5 <LLOQ at baseline, 1 <LLOQ by Day 28)

- Baseline substitutions at Y38, I105, and T109 were noted in 5,
 4 and 2 of the 24 subjects respectively
- 1 of 20 subjects did not respond to AB-506 treatment; correlated with pre-existing I105T variant
- I105T point mutation resulted in a 19-fold increase in EC₅₀ in vitro

Study AB-506-001: Frequency of baseline HBV Core variants observed

Variant	Observed Cases (n)	Observed Frequency ¹ (%)	Frequency in HBVdb (%)
Y38F	13	25	3.1
Y38H	2	3.8	1.2
I105T	4	7.7	0.6
I105V	7	13	1.1
1105L	5	9.6	0.7
T109S	2	3.8	0.1
T109M	3	5.8	0.7

¹Frequency in 52 CHB subjects screened for study AB-506-001 compared to frequency in HBVdb, the HBV knowledge database (https://hbvdb.ibcp.fr/)

Study AB-506-001: Safety findings in CHB Subjects

Adverse Events in CHB Subjects

Parameter	Cohort D 400 mg QD (n=10)	Cohort E 160 mg QD (n=10)	Placebo (n=4)
# subjects with AE	7	8	3
Worst Reported Grade AE [n,%] Grade 1 Grade 2 Grade 3 Grade 4	4 (40) 1 (10) 0 2 (20)	4 (40) 2 (20) 1 (10) ^a 1 (10) ^a	1 (25) 2 (50) 0 0
SAEs	0	0	0
D/C due to AE	2 ^b	1 ^c	0
Total # Subjects with Grade ≥2 ALT Elevation ^d Grade 2 Grade 3 Grade 4	0 0 2	2	0 0 0 0

(a) ALT and/or AST elevations; (b) transaminase elevations; (c) Grade 1 rash; (d) based on 2015 AASLD ALT normal range (<30 and <19 U/L for male and female, respectively)

- Grade 4 ALT subjects were from South Korea (2) or Hong Kong (2) sites.
- Grade 2 ALT subjects were from Hong Kong (1) or Thailand (1) sites.
- No other clinically significant abnormalities in laboratory tests, ECGs, or vital signs were noted.

Grade 4 ALT vs HBV DNA to FU Day 28

- These subjects had normal bilirubin, INR and liver synthetic function.
- ALT elevations rapidly resolved post-discontinuation of AB-506.
- One subject with Grade 4 ALT (7002-001) had remarkable and sustained antiviral responses during/after ALT normalization

Frequency/Severity of ALT elevation in CHB Subjects did not correlate with AB-506 Dose, Cmax or AUC at Day 1

ALT and HBV viral markers vs time – Subject 7002-001 (Grade 4 ALT)

NOTE: Log₁₀ Change axis truncated at -4.0 log₁₀

Viral Marker	HBV DNA*	HBsAg	HBV RNA	HBeAg	HBsAb	HBeAb
	(IU/mL)	(IU/mL)	(c/mL)	(PEI U/mL)	(IU/mL)	
Log ₁₀ BL (Day 1) value	8.01	4.34	7.07	2.98	<lloq< td=""><td>N/A</td></lloq<>	N/A
Log ₁₀ Change from BL Day 302	-7.01	-2.23	-3.10	-2.67	N/A	N/A
Actual Value Day 302	<lloq< td=""><td>130</td><td>9433</td><td>2.05</td><td>3.88</td><td>Negative</td></lloq<>	130	9433	2.05	3.88	Negative

Cytokine Profiling in Serum for Grade 4 ALT Subjects

IP-10 and ALT Levels vs Time

- Serum IP-10 increased concomitantly with ALT elevations
- No other CHB subjects had these simultaneous increases in IP-10 and ALT.

T cell activation markers, HBsAg and ALT Levels over Time - Subject 7002-001

- IFN-γ and IL-17α spikes preceded ALT rise.
- HBsAg levels declined after IFN-γ spike, suggesting potential beneficial immune component to ALT flare.

Investigated cytokines

```
GRO
                                                   IL-6
EGF
FGF-2
                  IL-10
                                                   IL-7
                                    IL-1RA
Eotaxin
                  MCP-3
                                                   IL-8
                  IL-12P40
                                                   IL-15
TGFa
                  IL-12P70
                                    IL-1b
                                                   MCP-1
G-CSF
FIt-3L
                  PDGF-AA
                                                   MIP-1a
                                    IL-3
                                                   MIP-1b
                  PDGF-AB/BB •
                                    IL-4
                                                   RANTES
Fractalkine
                                    IL-5
IFNa2
                                                   TNFb
                                                   VEGF
```


Study AB-506-003 (28 day dosing in Healthy Subjects)

AB-506-003 Demography:

- Cohort A (Caucasian) contained 8 (57%) males and mean (SD) age, BMI and baseline ALT were 26.1 (5.2) years, 21.9 (1.7) kg/m2, and 15.9 (7.0) U/L.
- Cohort B (Asian) contained 9 (64%) males and mean (SD) age, BMI and baseline ALT were 27.6 (7.7) years, 23.1 (2.6) kg/m2, and 16.7 (6.6) U/L.

Study AB-506-003: Safety Summary

Parameter	Cohort A (Caucasian) n=10	Cohort B (Asian) n=10	Pooled PBO n=8
# subjects with AE, n (%)	8 (80)	6 (60)	6 (75)
Worst Reported Grade AE, n(%) Grade 1 Grade 2 Grade 3 Grade 4	8 (80) 0 0 0	3 (30) 1 (10) 0 2 (20) ^a	6 (60) 0 0 0
SAEs, n (%)	0	2 (20)	0
D/C due to AE, n (%)	0	3 (30) ^b	0
Total # Subjects with Grade ≥2 ALT Elevation ^c	0	2 (20)	0
Grade 2	0	0	0
Grade 3 Grade 4	0	2 (20)	0

(a) hepatitis, transaminase elevation; (b) Gr 2 rash, hepatitis, transaminase elevation; (c) based on 2018 AASLD ALT normal range (<35 and <25 U/L for male and female, respectively)

- Most AEs were Grade 1/mild and assessed as unrelated.
- No other clinically significant abnormalities in laboratory tests, ECGs, or vital signs were noted.

*On treatment; dashed lines indicate placebo

- These subjects had normal bilirubin and INR values.
- ALT elevations rapidly resolved post-discontinuation of AB-506.

Serum IP-10 increased concomitantly with ALT elevations in Asian healthy subjects (Study AB-506-003)

Conclusions

- AB-506 demonstrated potent inhibition of HBV replication with mean declines in HBV DNA and HBV RNA of 2.8 and 2.4 log₁₀, respectively.
- One CHB subject harboring a resistant variant (I105T) at baseline had complete nonresponse to AB-506 monotherapy which underscores the importance of conducting molecular epidemiology studies to determine the prevalence of potentially-resistant CI variants
- A 28-day study (AB-506-003) in Asian and Caucasian HS demonstrated that the transaminase elevations observed in a subset of Asian CHB subjects ≥ Day 14 were drug-related.
- Further development of AB-506 has been discontinued but we remain committed to advancing an improved next-generation capsid inhibitor.

