HBV THERAPEUTIC VACCINES WEBINAR SUMMARY

TUESDAY JANUARY 18, 2022

10:30am - 1:00pm EST

AGENDA

Moderators: Adam Gehring, University of Toronto

Berkeley Public Health

Session Title	Speaker
Welcoming Remarks	Veronica Miller, Forum for Collaborative Research
 Overview of Therapeutic Vaccines for HBV Overview of Therapeutic Vaccines for HBV; Goals of Therapeutic Vaccines moving forward (including a brief discussion on previous strategies) 	John Travis, Saint Louis University Ulla Protzer, Technical University of Munich
 Company Presentations: Vir Biotechnology Inc. Virion Therapeutics VBI Vaccines GlaxoSmithKline (GSK) Altimmune 	Michael Schmid Hildegund Ertl Francisco Diaz-Mitoma Ventzi Vassilev Sarah Browne
 Discussion & Audience Questions: Potential Topics Optimal Combinations Monitoring Response Stratification/Patient Groups End Points 	Previous Presenters Regulators Patient Representatives
Conclusions and Next Steps	Veronica Miller, Forum for Collaborative Research

Summary

Welcoming Remarks:

• This webinar will feature an overview of therapeutic vaccines for HBV, presentations on industry strategies, and an audience q&a with a panel representing academia, industry, regulators, and patient advocates.

Overview of the HBV Forum

Slides: https://bit.ly/3APIRkH

- What: a platform for <u>ongoing</u> multi-stakeholder dialogue to identify barriers, prioritize research and identify solutions to accelerate therapeutic development for HBV
- **How:** provide a neutral, independent, safe space for discussion and deliberation across stakeholder groups
 - Focus on developing consensus, increasing synergy and collaboration, and reducing duplication and uncertainty
 - Ongoing working group activity throughout the year anchored by larger project events
 - Active & engaged participation

ICE-HBV: International Coalition to Eliminate HBV

Slides: https://bit.ly/3gc3Bsn

Mission: To fast track the discovery of a safe, effective, affordable and scalable cure to benefit all people living with CHB, including children and people living with HCV, HDV and HIV co-infection. ICE-HBV intends to contribute to the elimination of CHB as a global public health challenge.

Organization:

- Formed from the HBV basic and translational scientific community
- Governing board with world-wide representation by clinicians and basic scientists from academia and governmental research institutes
- Working groups targeting challenges in HBV and HDV biology and cure research
- Work closely with industry

Initiatives:

- Publish HBV/HDV cure strategy white papers
- HBV protocol repository
- HBV reagent repositories (with USA NIAID)

Berkeley Health

- Define standardized protocols for HBV cccDNA quantification
- Research symposia, think tanks on HBV and HDV cure, and educational materials in many languages
- Patient-focused conferences bringing together community activists and leading HBV researchers

Presentations

Presenter: Ulrike Protzer **Organization:** Institute of Virology, Technische Universität München **Title:** Therapeutic Vaccines moving forward **Slides:** <u>https://bit.ly/3gsTPCt</u>

Controlling HBV infection

- Immune control determines the course of Hepatitis B. With a strong antibody and T cell response there is a self-limiting infection. However, with no neutralizing antibodies, T cells are scarce and this leads to chronic infections. The goal of a therapeutic vaccine is to turn this immune tolerance state into an immune control state.
- Target treatments: Killing infected hepatocytes, inducing cell division to dilute cccDNA overtime, degradation of nuclear cccDNA
- T cell response is important.

Therapeutic Vaccine Strategies

- TherVac B Strategy
 - A heterologous protein-prime with an MVA-boost is superior to single component to create immunity.
 - Antiviral treatment → Particulate protein prime, adjuvanted → MVA vector boost:
 - Reduces inflammation → Induces neutralizing antibodies, prime T cell responses → Expands T cells, controls infection
 - DNA vs adjuvanted protein for prime?
 - Found that protein prime is superior to the DNA prime in producing CD8+, CD4+, and antibody responses
 - C-di-AMP adjuvanted protein induces anti-HBs and primes CD8+ T cells
 - Antiviral effect of DNA vs protein prime
 - PBS does nothing
 - S protein and S & Core proteins reduces the antigen load largely
 - DNA in a low dose does nothing
 - DNA in a high dose sometimes triggered a response
 - Protein prime in TherVacB allows induction of (neutralizing) antibodies and antiviral CD8 T cells and has a superior antiviral effect
 - o RNA Prime vs Protein Prime
 - For T-cell priming, protein is superior to DNA or RNA
 - TherVacB in HBe-negative HBV infection
 - TherVacB was able to reduce the HBeAg, induce T cell response, induce AntiS
 - TherVacB is able to "cure" HBV in AAV-HBV infected, HBV-carrier mice
 - Anti-CD4 and -CD8 depletion during prime vaccination
 - Activation of CDD4+ T cells during prime is essential for the success of TherVacB
 - HBV titers influence T-cell response to TherVacB
 - High HBV antigen levels impair the efficacy of therapeutic vaccination

- HBV Cure by TherVacB if antigen levels are high
 - TherVacB cures high-titer HBV carriers after siRNA pre-treatment

<u>Summary</u>

- HBV is able to avoid and to escape immune responses
- Antivirals control but do not eliminate HBV
- Immune activation will be necessary to clear the virus
- Therapeutic Vaccination activating virus-specific T cells seems most promising
- T cells are scarce in chronic HBV infection new T cells need to be primed
- Activation of CD4 T cells are important to help B cells and CD8 T cells
- Neutralizing antibodies help to limit further virus spread
- High antigen load (over longer time) will limit vaccine efficacy
- Therapeutic vaccination is safe and can cure HBV in preclinical models

Clinical Translation

- Therapeutic vaccination should activate B-, CD4+ and CD8 + T cells
- Optimal vaccine design: heterologous (protein prime / MVA boost)
- Antigen and vector design should cover HBV genotypes A-E
- In initial trials, a preselection of low HBsAg patients may be necessary
- To treat high-titer infection, a combination with siRNA is promising

Presenter: Michael A. Schmid

Organization: Vir Biotechnology

Title: VIR-3434, an investigational monoclonal antibody neutralizing Hepatitis B virus and facilitating FcgR-mediated elimination of HBsAg **Slides:** https://bit.ly/3octPzq

VIR-3434

- Monoclonal antibody that neutralizes HBV
 - Inhibition of viral entry
 - Presentation to and stimulation of T cells
 - Clearance of HBsAg and delivery to dendritic cells
- Fc-engineered antibody as a potential therapeutic vaccine against HBV
 - Generation of immune complexes → Immune complex binding to FcγRs on Dendritic cells → Phagocytosis, DC maturation and antigen presentation
 → Generation of effector T cells → Durable HBV specific immunity, potential functional cure
- GAALIE-Fc mutation & mAb:HBsAg ratios are crucial
 - FcgR signaling inducing effector functions that could mediate HBsAg elimination and potentially lead to functional cure
 - GAALIE induces signaling and binding
- VIR-3434 promotes FcγR-mediated association of HBsAg to immune cells in whole blood from HBV+ donors
 - GAALIE-Fc is essential to mediate HBsAg binding to immune cells
 - HBsAg binding is in line with FcgRIIIa (CD16) expression
- VIR-3434 in complex with HBsAg activates moDCs and stimulates antigen-specific reporter CD4+ T cells

- Significant increase of dendritic cell activation based on the GAALIE-Fc mutation
- Clinical data, phase 1: single dose of VIR-3434: preliminary HBsAg change from baseline
 - o Virally suppressed participants with chronic HBV infection
 - Single doses of 6, 18, or 75 mg of VIR-3434 were generally well tolerated
 - Rapid decline in HBsAg \geq 1 log10 IU/mL within 7 days

Conclusions

- VIR-3434 targets the conserved antigenic loop within HBsAg and mediates pangenotypic neutralization of HBV in vitro
- In vitro, Fc-engineered VIR-3434 bound and activated $Fc\gamma RIIa$ and more efficiently compared to the mAb with wild-type Fc
- VIR-3434 mediated the association of HBsAg to immune cells (neutrophils, monocytes, and NK cells) in whole blood of patients with CHB
- VIR-3434 in complex with HBsAg activated moDCs more efficiently and induced CD4+ reporter T cell responses, in vitro. These results are a first step towards potential long-term immunity and functional cure via a vaccinal effect.
- In patients with CHB, a single low dose of 6, 18 or 75 mg of VIR-3434 resulted in rapid reductions in HBsAg within 1 week.

Presenter: Hildegund Ertl

Organization: Virion Therapeutics

Title: VRON-0200: A pan genotypic therapeutic HBV vaccine containing core and pol coupled with an intrinsic checkpoint inhibitor: Preclinical Summary **Slides:** https://bit.ly/32OOzWu

Therapeutic HBV Vaccine approach

- Combine antigen and intrinsic check point inhibitors
- Induce a naïve T cell response to de novo epitopes to restore viral control

A First-in-class Immunotherapy for Chronic HBV

- First selected antigens that were immunogenic parts of HBV core & pol antigens
- Then cloned into an intrinsic checkpoint inhibitor
- Cloned the gene and fused it into a viral vector platform

Antigen Selection:

• Core & Polymerase (Pol) 1-3

• More conserved, less abundantly expressed so T cells are not exhausted Goal: Functional cure of chronic HBV infection

- Expansion of HBV-specific CD8+ T cells induced by the viral infection
 Limited by CD8+ T cell exhaustion
- Stimulation of CD8+ T cells to subdominant epitopes that were not induced by the infection

• Affected by duration of disease and viral loads

Checkpoint Inhibitor

• Herpes Simplex Virus Glycoprotein D

Berkeley Health

• HVEM is a co-inhibitor on T cells that will block BTLA

Methods

- Combination HBV PolN, PolC & Core Studies
 - Observed vectors instigated an T cell response

Candidate Optimization

- Within each target, poor/non immunogenic regions were removed
- Remaining regions were combined, fused into gD (VRON-0200) and compared to gDPolN (most immunogenic initial antigen)
- VRON-0200 vaccine responded to Core as well

Efficacy

- GD enhances antiviral activity, which correlates with CDD8+ T cell responses
- The VRON-0200 vaccinated mice had a steady decline in viral load
- CD8+ T cells affect the clearance of the virus
- Vaccination reduces S-antigen levels even at high AAV doses and without S in vaccine <u>Conclusions</u>
 - VRON-0200 vaccination
 - Vaccination elicits potent and broad CD8+ T cell responses to HBV core & polymerase
 - Vaccine-induced CD8+ T cells traffic to the liver
 - o Multi-log HBV DNA viral load declines after a single IM injection
 - o gD required for optimal antiviral activity
 - o Level of vaccine-induced viral declines depend on AAV challenge dose
 - Vaccine-induced CD8+, but not CD4+ T cell responses correlate with antiviral activity
 - o S-antigen declines observed despite lack of S in the vaccine construct
 - A Phase 1b clinical study is planned (Q4 2022)
 - Prime only and prime & boost regimens

Presenter: Francisco Diaz-Mitoma Organization: VBI Vaccines Title: VBI-2601: Immunotherapeutic HBV Program Slides: <u>https://bit.ly/3Hh0rzz</u>

Vaccines:

- Prophylactic Vaccine (PreHevbrio): recently approved for commercial use
- Immunotherapeutic candidates (VBI-2601 (BRII-179))

PreHevbrio

- Only 3-Antigen HBV Vaccine
- PreHevbrio is scientifically differentiated from other HBV vaccines
 - Expresses the three hepatitis B surface antigens (S, pre-S1, and pre-S2), and manufactured in mammalian cells (vs. yeast)
 - The pre-S1 and pre-S2 regions of the hepatitis B virus contain hepatocyte receptor binding sites

<u>VBI-2601</u>

- Potential to be a Critical Component of a Functional Cure for Chronic HBV Infection
 - Drive down hepatitis B virus (HBV) DNA

Berkeley Health

 $\circ \quad \text{Drive down immuno-suppressive HBV S-antigen}$

• Achieve long-term immunologic control

Development Plan & Status: 3 different clinical programs

- Phase 1b/2a Study- Completed in 2021
 - Two-part, multi-center, controlled, dose-escalation study (n=44)
 - Assessed VBI-2601 safety, tolerability, and immunologic antiviral activity in noncirrhotic patients with chronic HBV infection
 - Conducted in Australia, New Zealand, Thailand, South Korea, Hong Kong, and China
 - Data demonstrated that VBI-2601 induced both B cell and T cell responses and was well tolerated with no safety signals observed
 - No SAEs, deaths or signs of hepatotoxicity observed
 - o Data Demonstrated Significant Restoration of Antibody and T Cell Responses
 - Potent re-stimulation of T cell responses to HBV surface antigens (S, Pre-S1, Pre-S2) seen in 67% (Cohort B n=6/9) and 78% (Cohort C n=7/9) of evaluable patients in the low-dose VBI-2601 unadjuvanted and adjuvanted, respectively
 - Boosting of antibodies to HBV surface antigens observed in 19/43 (44.2%) of evaluable patients
- Phase 2 Combination Study- Initiated April 2021
 - First-in-class study to evaluate safety and efficacy of VBI-2601 in combination with an HBV-targeting siRNA (VIR-2218)
 - Multi-center study to be conducted in Australia, New Zealand, Thailand, South Korea, Hong Kong, China, Singapore, and Taiwan
 - Expected enrollment of ~135 adults aged 18-60 years with chronic HBV infection
 - Interim Phase 2 data expected H2 2022
- Phase 2a/2b "Add-On" Study to Standard-of-Care- Initiated December 2021
 - Two-part Phase 2 study designed to evaluate the clinical effect of adding VBI-2601 to existing standard of care therapy (PEG-IFN-α and Nrtl) in non-cirrhotic HBV patients
 - Expected enrollment of ~600 subjects in China
 - Initial data expected H1 2023

Upcoming Milestones:

- H2 2022: Top-line interim clinical data from Phase 2 combination study of VBI-2601 (BRII-179) and BRII-835 (VIR-2218) expected
- H1 2023: Initial data from Phase 2a/2b "add-on" study of VBI-2601 (BRII-179) + current standard-of-care therapy expected

Presenter: Ventzi Vassilev **Organization:** GSK **Title:** Targeted Immunotherapy for Chronic Hepatitis B **Slides:** https://bit.lv/3s6LpWt

GSK Hepatology Heritage

• Been developing vaccines for Hepatitis A and B for over 30 years

- Designed therapeutic interventions by understanding how CHB is controlled through immune mechanisms: the immunotherapy design targets simultaneous activation of the cellular (CD8/CD4 T-cells), humoral and innate immune responses.
 - Chimp adenovirus vector (ChAd155-hIi-HBV)
 - hli fusion to MHC class II invariant chain (hli) to enhance CD8 T cell response
 - Clinical research data using HCV antigens encoded by similar vector vaccines shows that inclusion of hli sequence in vaccine significantly improved magnitude HCV-specific T cell responses in humans
 - o MVA-HBV booster
 - Boosts a strong T cell response following ChAd priming
 - Inclusion of proteins (Rec proteins HBc + HBs, and Adjuvant AS01)
 - Outcome: Potent humoral and CD4 T-cell response
 - Selective increase of inflammatory cytokines and chemokines in serum induced by AS01B-adjuvanted vaccine suggesting potent innate system activation
- See slides for study design
- Results of *In vivo* testing in HLA.A2 mouse model of chronic HBV infection
 - The co-administration vaccine regimen (viral vectors together with adjuvanted proteins) induced higher HBc/HBs-specific antibody and T cell responses compared to the sequential regimen.
 - The vaccine co-administration regimen induced similar levels of HBs-specific CD4+ T cell responses as those detected in the vaccinated healthy mice group.
 - Despite the induced HBV specific immunity (notably HBc-specific CD8+ T cells responses) no increase in AST/ALT serum levels was detected → no sign of liver cytotoxicity was observed.

Presenter: Sarah K. Browne **Organization:** Altimmune **Title:** Immunotherapeutics in the Treatment of Chronic Hepatitis B **Slides:** <u>https://bit.ly/3odxjBF</u>

HepTcell Vaccine

- In Phase 2, data readout expected H2 2022
- 30 to 40 a.a. long peptides manufactured by solid phase synthesis
- Contain CD4+ and CD8+ T cell epitopes to overcome HLA restriction
- Fluorocarbon moiety promotes micelle formation and improves immunogenicity
- Robust immunogenicity observed with this peptide platform in young and older adults

HepTcell covers 4 predominant HBV genotypes and all other genotypes by homology

- Most individual peptide components of HepTcell can cross-react with multiple HBV genotypes
- Collectively, the peptides in HepTcell cross-react with genotypes A-D
- Based on HBV homology, HepTcell expected to cross-react with all HBV genotypes

See slides for study demographics, methods, and injection site reaction assessments

Immunogenicity Data:

- Looks at robust T cell responses
- Robust IFN-γ ELISpot Responses
- Each peptide and dose influences the change in baseline
- Shows robust responses: Most prominent with low dose peptide and IC31

PHASE 2 CLINICAL TRIAL

- Patients with inactive CHB and HBsAg levels ≤ 100 IU/mL is a subpopulation that might demonstrate a response to immunotherapy
- Virologic response appears to be more likely to occur with a longer duration of immunotherapy
- 80 patients with HBeAg negative inactive CHB and HBsAg ≤ 100 IU/mL randomized 1:1 to HepTcell or placebo administered every 4 weeks for 24 weeks
- Follow-up at 48 weeks after the last dose will assess the safety and durability of response
- Efficacy endpoints
- Primary: proportion of patients with 1.0-log reduction in HBsAg from baseline at Week 24
- Secondary: HBsAg clearance, changes from baseline in HBsAg, HBV DNA, HBcrAg, pg-RNA at Week 24

Goals of treatment:

- Suppress HBV DNA/viral antigens to reduce virus-induced immune dysregulation
- Break T cell tolerance and reprogram HBV-specific immune responses
 - Leads to a functional cure: Loss of HBV DNA and HBsAg

Discussion and Q&A

Moderator: Adam Gehring, Toronto Centre for Liver Disease, University Health Network

What is going to be the optimal combination for therapeutic vaccines?

- We can/should look for responses in blood
- But are we looking at the right biomarkers, is it T/B cell magnitude? Specific functionalities?
- Should we be looking at the target organ? T Cell response will likely migrate to the liver *Coming back to the original Question*
 - SiRNAs? Check point inhibitors?
 - Removing/lowering the antigen levels do not restore the T cells in HCV or animal models
 - So, will inducing T cells be easier if the antigen levels are lower?
 - The amount of antigens and the kind of antigens produced in the liver is important and impacts T cell restoration
 - HBsAg levels are clearly associated with responses. Patients with lower HBsAg tend to clear HBsAg more easily...potentially a logical outcome but suggest level of antigen is important.
 - Duration of antigen inhibition may play a role for immune restoration
 - Age has an impact on immune response
 - Immune restoration may depend on the stage the patient is in, how long have they had chronic HBV and how they were originally infected
 - AAV-HBV mouse model is not the best model predict what happens in humans.

- Can we give everyone the same regiment?
- Possible mRNA vaccine?

What patients do you enroll in these vaccination trials

- Low surface antigen levels to push into functional cure
- Driving down surface antigen levels with siRNA may not be the same as patients with naturally low surface antigen
- Younger patients potentially have more robust immune responses and could be considered
- We have to think about different HBV genotypes A-E and recognize the mismatches in vaccine antigens and genotypes may occur
- Have variability and diversity in patients and genotypes but understand there is greater burden in Asian and African populations
- Need to consider that patients may be co-infected with other diseases
- The target population should be enrolled in the final phases

Are patients aware of these new technologies?

- COVID-19 vaccines have actually jumpstarted the possibilities of people accepting an HBV vaccines
- Patients want to get off drugs, want to forget about the stigma, want a cure

How do we distribute treatments more widely in places that have more prevalence?

- Sell for \$2-3, needs to be affordable
- Simplify vaccine regimens and keep costs down
- Better development of diagnostics

What do regulators think about in order to move vaccines forward

- Safety
- The immune response
- Full characterization of an immune response
- Data on combination therapies
- What is the biological and immunological and virological response?
- Efficacy Data
- Consensus of the endpoints
 - HIV has done this, hopefully HBV will one day
 - Network with other labs and countries
 - Come up with a baseline of T cell analysis assays
 - However, shipping T cells is impossible
 - Finding biomarkers is also difficult

