

VRON-0200:

A pan genotypic therapeutic HBV vaccine containing core and pol coupled with an intrinsic checkpoint inhibitor: Preclinical Summary

Hildegund Ertl, MD

The Wistar Institute, Philadelphia, PA

Background CD8+ T Cell Impairment and Chronic HBV Infection

- CD8⁺ T cells become impaired during chronic HBV infections, resulting in loss of viral control
- Immune modulators & therapeutic vaccines for chronic HBV have shown limited clinical benefits^{1–5}
 - "Rescue" of T cells with PD-1 checkpoint blockade is limited by:
 - ✓ Irreversible epigenetic changes in most HBV-specific T cells
 - ✓ Serious "off target" side effects in an otherwise healthy population
- Stimulation of naïve HBV-specific T cells by traditional therapeutic vaccines
 - Likely ineffective as most T cells to immunodominant HBV-specific epitopes are already activated
 - Optimized vaccine approaches that induce a response of naïve T cells to *de novo* epitopes may be able to restore viral control

VRON-0200: A First-in-class Immunotherapy for Chronic HBV

Antigen selection

 Immunogenic parts of HBV core & pol antigens selected

Genetically encoded checkpoint modifier

- Checkpoint modification enhances CD8⁺ T cells response to the target antigen
- Broadens T cell responses
- Locally acting and cleared within 2-3 weeks, with a lower risk for "off target" toxicity

Viral vector platform

- Limited pre-existing vector immunity
- Limited cross-vector immunity
- Allows for prime & boost administration

Challenge model: AAV8-1.3HBV

Liver trophic AAV resulting in high loads of HBV in serum

HBV, hepatitis B virus; pol, polymerase.

VRON-0200: Antigen Selection

Goal: Functional cure of chronic HBV infection

- > Expansion of HBV-specific CD8+ T cells induced by the viral infection
 - ➤ Limited by CD8⁺ T cell exhaustion
- ➤ De novo stimulation of CD8⁺ T cells to subdominant epitopes that were not induced by the infection
 - > Affected by duration of disease and viral loads

Core & Polymerase (Pol) 1-3	Surface (env, S) ¹⁻³
Produced at low levels throughout disease; T cells directed to core/pol are potentially more "rescuable"	Secreted at high levels throughout course of disease; T cells directed to S have a low likelihood of being rescued
Antigens directly involved with viral replication ✓	Immune decoy; not directly involved in viral replication/cccDNA proliferation
T cells to core & pol associated with:	T cells to S:
 Prevention of viral breakthrough/flares upon NRTI discontinuation 	 High variability across genotypes Absent in chronic HBV-
Disease clearance in chronic HBV-infected patients	infected patients *
INCLUDED	NOT INCLUDED

Herpes Simplex Virus Glycoprotein D The Genetically Encoded Checkpoint Inhibitor Adjuvant in VRON-0200

HVEM Complex in Regulating T cell Activation

BTLA-HVEM – inhibition LIGHT-HVEM – stimulation BTLA-HVEM-LIGHT - inhibition gD & BTLA Share HVEM Binding Site

HVEM crystal structure¹

gD BTLA-HVEM Blockade Enhances and Broadens T cell Activation

Methods Combination HBV PolN, PolC & Core Studies

Vectors investigated*

AdC(6/7)-gDPoIN, -gDPoIC, -gDCore

 N- or C-terminal part of polymerase or core within gD

AdC(6/7)-gDHBV2 (VRON-0200)

Polymerase + core within gD

AdC(6/7)-HBV2

Polymerase + core without gD

Analyses of T cell responses

Post-vaccination analyses of T cell responses in blood, spleen, and liver

- Intracellular cytokine staining (ICS) for IFNy
- MHC I tetramer staining combined with phenotypic analyses
- Epitope mapping of HBV-specific CD8⁺ T cells by ICS

Challenge experiment

AAV8-1.3HBV AAV vector model – 1×10^{9} – 1×10^{11} vg IV

Vaccine vectors – Single IM dose of 1 x 10¹⁰ vp

Administered 4 weeks after AAV8-1.3HBV injection

^{*}AdC6 and AdC7 are heterologous chimpanzee adenoviral viral vectors of serotype 6 and 7.

^gDHBVsd also referred to as AdC6-gDHBV3 and AdC7-gDHBV3 when combined with AdC6 and AdC7 vectors, respectively.
ICS, intracellular cytokine staining; IV, intravenous; sd, subdominant; vg, viral genome; vp, virus particles.

Breadth of CD8⁺ T Cell Responses in Several Mouse Strains

Conclusions

VRON-0200 vaccination

- Vaccination elicits potent and broad CD8⁺ T cell responses to HBV core & polymerase
- Vaccine-induced CD8⁺ T cells traffic to the liver
- Multi-log HBV DNA viral load declines after a single IM injection
 - ✓ gD required for optimal antiviral activity
 - ✓ Level of vaccine-induced viral declines depend on AAV challenge dose
 - ✓ Vaccine-induced CD8⁺, but not CD4⁺ T cell responses correlate with antiviral activity
- S-antigen declines observed despite lack of S in the vaccine construct

A Phase 1b clinical study is planned (Q4 2022)

Prime only and prime & boost regimens

Acknowledgments

- Mohadeseh Hasanpurghadi
- Mikhail Novikov
- Peter Zhou
- Dakota Newman
- Robert Ambrose