

Stopping NUCs –
Flares and mitigating risk
Regulatory considerations for clinical
trial design for novel combination
therapies with a finite treatment
duration in CHB patients who are
virologically suppressed on NUCs

Dr. Stephanie Buchholz Clinical Assessor Antivirals

Disclaimer

"The views expressed here are my personal views, and shall in no way be binding for the BfArM or CHMP/EMA."

Types of HBV cure covered by approved drugs

NUCs
IFNs
Viral suppression

Current drug
development
programs

HBsAg loss
Viral suppression
w/wo anti-HBs

Complete cure Sterilizing cure Goal of future therapies HBs Ag loss HBsAg loss Viral suppression Viral suppression ccc DNA elimination Erredication of elimination integrated HBV DNA

Lok A, Hepatology & J Hepatol 2017 Modified from Lang et al., Hepatol Int 2019

Trial design considerations – Finite therapy in CHB patients who are virologically suppressed on NUCs

Well controlled randomized trials in the proposed population with an approved active control arm

Trial design:

Investigational product (s) + NUC vs. NUC alone

Study population:

CHB patients virologically suppressed on NUCs (most likely HBeAg pos/neg patients)

Primary efficacy endpoint:

Sustained suppression of **HBV DNA** (< LLOQ) with **HBsAg loss** (< 0.05 IU/ml) with or without anti-HBs after treatment discontinuation

Treatment duration:

Finite treatment duration dependent on the Mechanism of Action and half-life of the drug

Trial design - finite treatment Criteria for stopping NUCs EOT

Increasing evidence that stopping long-term NUC therapy results in HBsAg-loss rates of up to 20%

Criteria of stopping NUCs in clinical trials should be:

- Applied equally across treatment arms
- Well-defined in the protocol
- Stringent (e.g. HBsAg loss or marked reduction of other biomarkers identified)

Remaining question:

Do baseline demographic or disease characteristics, i.e. HBeAg status or prior duration of suppression with NUC impact the importance of discontinuing NUCs in terms of efficacy and safety?

Criteria for stopping NUCs EOT – variables to consider

- Potential impact of baseline demographic and disease characteristics on response rates after stopping
 NUCs → effect on efficacy outcome
- Reflected in the study design (inclusion/exclusion criteria, stratification criteria and pre-defined subgroup analyses)
- Variables to consider for the study design to ensure comparability between IP arm and control arm
 - ➤ HBeAg status
 - ➤ HBsAg levels at baseline and stopping NUCs
 - > Duration of viral suppression
 - > Treatment history (duration and type of NUC)
 - ➤ Presence/absence of cirrhosis
 - > Age, race and HBV genotype
 - > HBV DNA levels during reactivation

Potential labelling consequences !!!

Safety considerations – hepatitis flares

- > Stopping NUC treatment is often associated with hepatitis flares
- ➤ HBsAg loss is not necessarily associated with severe flares

Assessment of on- and off- treatment hepatitis flares

- **Differentiation** between **beneficial** (immune clearance) and **severe flares** (drug induced liver injury)
- Severe flares associated with increase in bilirubin or prothrombin time can be serious and lifethreatening
- Detailed safety monitoring plan for evaluation of hepatitis flares should be included in the clinical study protocol (low bar for monitoring flares recommeded, i.e. 2x ULN)
- Definition of unambiguous predefined treatment discontinuation and trial stopping rules
- Treatment re-initiation criteria for NUC should be predefined in the protocol

Safety considerations – Risk factors for detrimental withdrawl flares

- > Fibrosis state, cirrhosis
- Re-treatment strategy
- Serological status: HBsAg < HBeAg neg. < HBeAg pos.</p>
- ➤ Rise of HBV-DNA
- > Amplitude of flare
- > AUC of flare
- Comorbidities

Trial design-Safety considerations

- Benefits should outweigh the potential risks for the intended population
- Avoidance of unreasonable and significant risks for clinical trial participants
- All serious hepatic events (deaths, liver transplantation, hepatic decompensation, cases of severe
 hepatitis flares) and immune system related events (autoimmunity/extreme immune response) should
 be systematically evaluated
- Independent safety data reviewing committee is recommended

Timing and Response rates

Timing of assessment

- Off-treatment response for Phase IIb/III trials
- May depend on mechanism of action and half-life of the drug

Response rates

Must be sufficiently high to outweigh the risk for DILI/flare related morbidity and substantial remaining uncertainties in order to support approval

Benefit/Risk considerations for regulatory decision making:

- Benefit: Magnitude and durability of response
- Risk: Safety profile, risk potential
- Relation to approved therapeutic options (Benefit-Risk)

Benefit/Risk profile

Trial design -Follow-up and long-term follow-up

Adequate long-term follow-up data will be required to support approval

Follow-up evaluation

- Adequate FU to monitor for durability of response and observational clinical data on clinical events (timing is dependent on mechanism of action and treatment duration)
- Post-treatment relapses and resistance development should be evaluated

Post-marketing Long-term follow-up

- Appropriate long-term follow-up should be planned and defined at time of application to assess durability of sustained response and long-term clinical outcome
- Evaluation of incidence of liver-related complications (hepatic failure, HCC, liver transplant and liver-related deaths)
- Documentation of late post-treatment relapses

Conclusion

Stopping NUCs at EOT in clinical trials aiming at functional cure in CHB patients who are virologically suppressed on NUCs with a finite treatment duration, requires **careful considerations** on the **clinical trial design**, due to the potential **impact of baseline demographic** and **disease characteristics** on **response rates** after stopping NUCs **(efficacy)** and the occurrence of **hepatitis flares (safety) Efficacy:**

- Baseline demographic and disease characteristics should be considered for the study design (i.e. stratification factors, inclusion/exclusion criteria, pre-defined subgroup analyses)
- Criteria for stopping NUCs should be applied equally across treatment arms, well-defined in the study protocol and stringent to allow comparability between the investigational arm and the control arm

Safety:

- Safety monitoring of hepatitis flares is considered essential (i.e. detailed safety monitoring plan, clear stopping and retreatment criteria, exlclusion of patients at risk for severe flares)
- Appropriate long-term follow-up data required, durability of sustained response, post-treatment relapses, long-term clinical outcome and evaluation of incidence of liver-related complications
 - → Independent safety data reviewing committee is recommended

Thank you very much for your attention!

Contact

Federal Institute for Drugs and Medical Devices Division 32, Infectiology/Dermatology/Allergology Kurt-Georg-Kiesinger-Allee 3 D-53175 Bonn

Contact person Dr. Stephanie Buchholz Stephanie.buchholzbfarm.de www.bfarm.de Phone +49 (0)228 99 307-4323 Fax +49 (0)228 99 307-3392

