OVERVIEW OF STOPPING NUCS IN CURRENT CLINICAL PRACTICE

Grishma Hirode, MSc

Toronto General Hospital
University Health Network
University of Toronto, Canada

July 14th, 2021
HBV Forum
Disclosures

No conflicts of interest to disclose
Main goals of nucleos(t)ide analogue (NUC) therapy for chronic hepatitis B (CHB) patients:
- Long-term HBV DNA suppression
- HBeAg loss, with or without anti-HBe seroconversion, in HBeAg positive CHB patients
- ALT normalization
- HBsAg loss, with or without anti-HBs seroconversion → optimal endpoint!
- Improve survival and quality of life by preventing disease progression and HCC

Current guidelines:
- The Asian Pacific Association for the Study of the Liver (APASL) 2016
- The European Association for the Study of the Liver (EASL) 2017
- The American Association for the Study of Liver Diseases (AASLD) 2018
Stopping NUC therapy

PRO

- Life-long therapy not required
 - Financial benefits?
 - Adherence/compliance?

- No NUC-related long-term side-effects or safety concerns

- Higher rates of HBsAg loss
 - On-therapy (annual incidence) ~1%\(^1,2\)
 - Off-therapy (cumulative incidence) 0-55% over follow-up durations of 0.5-8 years\(^3,4\)

CON

- NUCs are cheap in most regions, safe and effective, improve long-term outcomes, and monitoring is simple

- Prediction of response after stopping unclear:
 - Strict and frequent monitoring required
 - Non-compliance can result in severe or fatal flares
 - Costs?

- While for those who remain HBsAg positive, disease remission may be achieved, long-term HBV DNA undetectability may not be achieved
 - Risk of progression of fibrosis

Stopping guidelines: HBeAg positive patients

<table>
<thead>
<tr>
<th>APASL 2016¹</th>
<th>EASL 2017²</th>
<th>AASLD 2018³</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBsAg loss</td>
<td>HBsAg loss</td>
<td>HBsAg loss</td>
</tr>
<tr>
<td>OR</td>
<td>OR</td>
<td>OR</td>
</tr>
<tr>
<td>HBeAg seroconversion +</td>
<td>HBeAg seroconversion +</td>
<td>HBeAg seroconversion +</td>
</tr>
<tr>
<td>Consolidation ≥12 months +</td>
<td>Consolidation ≥12 months +</td>
<td>Consolidation ≥12 months +</td>
</tr>
<tr>
<td>Undetectable HBV DNA +</td>
<td>Undetectable HBV DNA +</td>
<td>Undetectable HBV DNA +</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stopping guidelines: HBeAg negative patients

<table>
<thead>
<tr>
<th>APASL 2016<sup>1</sup></th>
<th>EASL 2017<sup>2</sup></th>
<th>AASLD 2018<sup>3</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>HBsAg loss</td>
<td>HBsAg loss</td>
<td>HBsAg loss</td>
</tr>
<tr>
<td>+ Consolidation ≥12 months</td>
<td>OR</td>
<td>OR</td>
</tr>
<tr>
<td>or anti-HBs+</td>
<td>May be considered in selected patients given the following:</td>
<td>Compelling rationale</td>
</tr>
<tr>
<td>OR</td>
<td>Viral suppression ≥36 months</td>
<td></td>
</tr>
<tr>
<td>NUC therapy ≥24 months +</td>
<td>No cirrhosis</td>
<td></td>
</tr>
<tr>
<td>Undetectable HBV DNA on three occasions 6 months apart +</td>
<td>Guaranteed post-NUC monitoring</td>
<td></td>
</tr>
<tr>
<td>No cirrhosis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RCT: FINITE study

- **42 virally suppressed HBeAg negative patients (21 stop, 21 continue):**
 - 88% Caucasian
 - 100% TDF
 - Mean Fibroscan 5.6 kPa

- **Primary endpoint:**
 - HBsAg loss at 144 weeks

- **Conclusions:**
 - Higher HBsAg loss in stop arm at 144 weeks
 - No serious adverse events
 - Highly controlled cohort under strict observation!

- **Retreatment criteria:**
 - ALT flares
 - Clinical relapse
 - Decompensation

For patients who fulfilled any of these criteria, TDF was restarted at the discretion of the investigator

RCT: TORONTO STOP study

• 67 virally suppressed HBeAg-patients (45 stop, 22 continue):
 – 97% Asian
 – 7% ETV, 93% TDF
 – Mean Fibroscan 5 kPa

• Primary endpoint:
 – Sustained response (HBV DNA <2000 IU/mL) at 48 weeks

• Conclusions:
 – NUC withdrawal has marginal benefits in Asians
 – No serious adverse events

Response at 72 weeks:

<table>
<thead>
<tr>
<th></th>
<th>Stop vs. Continue</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBsAg loss</td>
<td>2.2% vs. 4.5%</td>
<td>1.00</td>
</tr>
<tr>
<td>HBV DNA <20 IU/mL</td>
<td>2.2% vs. 91%</td>
<td><0.005</td>
</tr>
<tr>
<td>ALT ≤ULN</td>
<td>47% vs. 82%</td>
<td>0.01</td>
</tr>
<tr>
<td>ALT ≤ULN + HBV DNA <2000 IU/mL</td>
<td>29% vs. 82%</td>
<td><0.005</td>
</tr>
<tr>
<td>Retreated</td>
<td>38% vs. N/A</td>
<td></td>
</tr>
</tbody>
</table>

• Retreatment criteria:
 – HBeAg seroreversion
 – Clinical relapse

Final decision was at the discretion of the treating physician

RCT: Stop-NUC trial

- **158 HBeAg negative patients** (79 stop, 79 continue):
 - 80% Caucasian
 - 39% ETV, 51% TDF
 - Mean Fibroscan 5.7 kPa

- **Primary endpoint:**
 - HBsAg loss at 96 weeks

- **Conclusions:**
 - Higher HBsAg loss in stop arm at 96 weeks
 - End of therapy HBsAg <1000 U/mL predictive of HBsAg loss
 - No serious adverse events
 - ALT flares respond well to retreatment
 - Long-term monitoring is crucial

HBsAg loss

<table>
<thead>
<tr>
<th>HBsAg loss</th>
<th>Baseline HBsAg <1000 U/mL</th>
<th>Baseline HBsAg ≥1000 U/mL</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>18 (72%)</td>
<td>53 (98.1%)</td>
<td>0.001</td>
</tr>
<tr>
<td>Yes</td>
<td>7 (28%)</td>
<td>1 (1.9%)</td>
<td></td>
</tr>
</tbody>
</table>

Results at Week 96: NUC stopping arm

<table>
<thead>
<tr>
<th>Event</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBsAg loss</td>
<td>8 (10.3)</td>
</tr>
<tr>
<td>No retreatment indicated</td>
<td>53 (67.9)</td>
</tr>
<tr>
<td>Retreatment indicated</td>
<td>6 (7.7)</td>
</tr>
<tr>
<td>Retreatment initiated</td>
<td>11 (14.1)</td>
</tr>
<tr>
<td>Total</td>
<td>78 (100)</td>
</tr>
</tbody>
</table>

- **There were six main retreatment criteria:**
 - ALT flares (3)
 - Decompensation (1)
 - **Physician discretion** (2)
Cohort studies

<table>
<thead>
<tr>
<th>Source</th>
<th>Number of patients</th>
<th>Race/ ethnicity</th>
<th>Pre-therapy HBeAg</th>
<th>HBsAg loss incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chan</td>
<td>53</td>
<td>Asian</td>
<td>Neg</td>
<td>23% at 5 years</td>
</tr>
<tr>
<td>Hadziyannis*</td>
<td>33</td>
<td>Caucasian</td>
<td>Neg</td>
<td>39% at 5.5 years</td>
</tr>
<tr>
<td>Chen</td>
<td>188</td>
<td>Asian</td>
<td>Pos / Neg</td>
<td>24% at 6 years</td>
</tr>
<tr>
<td>Patwardhan*</td>
<td>33</td>
<td>N/A</td>
<td>Neg</td>
<td>N/A</td>
</tr>
<tr>
<td>Chi*</td>
<td>94</td>
<td>Mixed</td>
<td>Pos / Neg</td>
<td>3.1% annual rate</td>
</tr>
<tr>
<td>Hung*</td>
<td>73</td>
<td>Asian</td>
<td>Neg</td>
<td>47% at 6 years</td>
</tr>
<tr>
<td>Yao</td>
<td>119</td>
<td>Asian</td>
<td>Neg</td>
<td>55% at 6 years</td>
</tr>
<tr>
<td>Cao</td>
<td>82</td>
<td>Asian</td>
<td>Pos / Neg</td>
<td>10% at 2 years</td>
</tr>
<tr>
<td>Van Hees*</td>
<td>62</td>
<td>Mixed</td>
<td>Pos</td>
<td>N/A</td>
</tr>
<tr>
<td>Jeng*</td>
<td>691</td>
<td>Asian</td>
<td>Neg</td>
<td>13% at 6 years</td>
</tr>
<tr>
<td>Papatheodoridis*</td>
<td>57</td>
<td>Caucasian</td>
<td>Neg</td>
<td>25% at 1.5 years</td>
</tr>
<tr>
<td>Su*</td>
<td>100</td>
<td>Asian</td>
<td>Neg</td>
<td>0% at 2 years</td>
</tr>
<tr>
<td>Chen*</td>
<td>411</td>
<td>Asian</td>
<td>Pos / Neg</td>
<td>N/A</td>
</tr>
</tbody>
</table>

* Reports number of complications off-therapy

RETRACT-B study

Update on the RETRACT-B study design and protocol presented at the HBV forum in 2019

• **Study design**: Retrospective cohort study (N = 1,556)

• **Study population**: CHB patients who discontinued NUC therapy from participating centers across North America, Europe, and Asia

 • **Inclusion**:
 – Virally suppressed at NUC withdrawal
 – HBeAg negative at NUC withdrawal: both HBeAg positive and negative at start of therapy

 • **Exclusion**:
 – Coinfection: HCV, HDV, and/or HIV
 – HCC diagnosis prior to stopping NUCs
 – Pegylated interferon therapy within 12 months prior to stopping NUCs
RETRACT-B study: Global, multi-center cohort

- Toronto Centre for Liver Disease
- Erasmus Medical Center
- Antwerp University Hospital
- Hospital Clinic of Barcelona
- Hannover Medical School
- Medical School of National and Kapodistrian University of Athens

Additional locations include:
- University of Hong Kong
- The Chinese University of Hong Kong
- Chang Gung Memorial Hospital
- National Taiwan University Hospital
- Kaohsiung Chang Gung Memorial Hospital
- E-DA Hospital/Fu-Jen Catholic University Hospital

(Toronto Centre for Liver Disease logo on the left)
RETRACT-B study: Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Total Cohort (N = 1,556)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at NUC withdrawal: < 50 years / ≥ 50 years, %</td>
<td>37 / 63</td>
</tr>
<tr>
<td>Sex: Male / Female, %</td>
<td>72 / 28</td>
</tr>
<tr>
<td>Race/ethnicity: Caucasian / Asian / Other, %</td>
<td>11 / 88 / 1</td>
</tr>
<tr>
<td>NUC prior to withdrawal: ETV / TDF, %</td>
<td>63 / 29</td>
</tr>
<tr>
<td>Total NUC duration, years, median (IQR)</td>
<td>3.0 (3.0 – 4.0)</td>
</tr>
<tr>
<td>Start of therapy HBeAg status: Negative / Positive, %</td>
<td>84 / 15</td>
</tr>
</tbody>
</table>

At NUC withdrawal

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cirrhosis status: Non-cirrhotic / Cirrhotic, %</td>
<td>88 / 12</td>
</tr>
<tr>
<td>HBsAg, (\log_{10}) IU/mL, mean ± SD</td>
<td>2.6 ± 0.8</td>
</tr>
<tr>
<td>ALT x ULN, median (IQR)</td>
<td>0.6 (0.4 – 0.8)</td>
</tr>
</tbody>
</table>

During off-therapy follow-up

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of follow-up visits, median (IQR)</td>
<td>6 (3 – 9)</td>
</tr>
<tr>
<td>Time between visits, months, median (IQR)</td>
<td>2.8 (2.0 – 5.0)</td>
</tr>
<tr>
<td>Total follow-up time, months, median (IQR)</td>
<td>19.4 (8.0 – 39.8)</td>
</tr>
</tbody>
</table>
RETRACT-B study: HBsAg loss

- Cumulative incidence of HBsAg loss:
 - 3% at 1 year
 - 7% at 2 years
 - 10% at 3 years
 - 13% at 4 years

- Adjusted HBsAg loss ~6 times higher among Caucasians vs. Asians (p <0.001)

- Adjusted HBsAg loss ~22 times higher among patients with end of therapy HBsAg ≤100 IU/mL vs. >100 IU/mL (p <0.001)
RETRACT-B study: Results

- Cumulative incidence of retreatment was 30% at 1 year and 56% at 4 years off-therapy

- 19 patients developed hepatic decompensation:
 - Cumulative incidence of hepatic decompensation was 1% at 1 year and 2% at 4 years off-therapy
 - Higher among patients diagnosed with cirrhosis at any time point prior to NUC withdrawal
 - Higher among start of therapy HBeAg positive patients

- 16 patients developed HCC:
 - Cumulative incidence of HCC was 0.4% at 1 year and 1% at 4 years off-therapy

- 14 (1%) patients died among the total cohort
What we know: Flares

- Risk of severe ALT flares after NUC withdrawal may be associated with severity of virological relapse\(^1\)
- An ALT flare may not be a prerequisite for HBsAg loss,\(^2\) and may result in complications if not retreated

Host-dominating or “effective” flare\(^3\)
Virus-dominating or “ineffective” flare\(^3\)

1. Papatheodoridis GV et al. 2018;68(2):415-424
What we know: Complications

• Case reports of patients who developed off-NUC complications, or descriptive information within a larger study

• Few studies comparing incidence of liver-related complications on- and off-NUC therapy
 – Most with small sample sizes
 – Most show no difference in HCC incidence

• However, rates of hepatic decompensation and HCC cannot be compared across studies due to differences in baseline criteria
 – Need a well-designed large and long-term RCT to answer this question!
What we know: Retreatment

• Current decisions on when to retreat largely based on physician discretion

• Virological relapse after stopping is universal → poor criterion

• No retreatment criteria outlined in any of the three guidelines!

• Decision on when to retreat is crucial:
 – Not to early → to potentially achieve HBsAg loss
 – Not too late → to prevent liver-related complications
Conclusion

• Most existing studies are small, single-site studies that did not correct for selection or measurement bias

• Larger studies on stopping NUCs are from Asia which are not seldom driven by local policies and reimbursement criteria

Future direction:

– Better understanding of viral and host factors involved in the pathogenesis of CHB
– Identification of novel biomarkers and predictors of response after NUC withdrawal
– Off-NUC flare management strategies
– Standardization of stopping and retreatment criteria, and monitoring frequencies
– New antivirals and therapeutic strategies, including combination therapies → more RCTs!