OVERVIEW OF STOPPING NUCS IN CURRENT CLINICAL PRACTICE

Grishma Hirode, MSc

Toronto General Hospital University Health Network University of Toronto, Canada

July 14th, 2021 HBV Forum

Disclosures

No conflicts of interest to disclose

Current clinical practice

- Main goals of nucleos(t)ide analogue (NUC) therapy for chronic hepatitis B (CHB) patients:
 - Long-term HBV DNA suppression
 - HBeAg loss, with or without anti-HBe seroconversion, in HBeAg positive CHB patients
 - ALT normalization
 - HBsAg loss, with or without anti-HBs seroconversion \rightarrow optimal endpoint!
 - Improve survival and quality of life by preventing disease progression and HCC
- Current guidelines:
 - The Asian Pacific Association for the Study of the Liver (APASL) 2016
 - The European Association for the Study of the Liver (EASL) 2017
 - The American Association for the Study of Liver Diseases (AASLD) 2018

Stopping NUC therapy

PRO

- Life-long therapy not required
 - Financial benefits?
 - Adherence/compliance?
- No NUC-related long-term side-effects or safety concerns
- Higher rates of HBsAg loss

TORONTO CENTRE FOR

- On-therapy (annual incidence) ~1%^{1,2}
- Off-therapy (cumulative incidence) 0-55% over follow-up durations of 0.5-8 years^{3,4}

CON

- NUCs are cheap in most regions, safe and effective, improve long-term outcomes, and monitoring is simple
- Prediction of response after stopping unclear:
 - Strict and frequent monitoring required
 - Non-compliance can result in severe or fatal flares
 - Costs?
- While for those who remain HBsAg positive, disease remission may be achieved, long-term HBV DNA undetectability may not be achieved
 - Risk of progression of fibrosis

Yeo YH, et al. Gastroenterology 2019;156:635–646;10:1–98
Zhou K, et al. J Hepatol. 2017;67(2):370–98
Liem, et al. Gastroenterology 2020;158(5):1185-1190
Jeng et al. Hepatology 2018;68(2):425-434

Stopping guidelines: HBeAg positive patients

APASL 2016 ¹	EASL 2017 ²	AASLD 2018 ³
HBsAg loss	HBsAg loss	HBsAg loss
<u>OR</u>	<u>OR</u>	<u>OR</u>
HBeAg seroconversion + Consolidation ≥12 months + Undetectable HBV DNA	HBeAg seroconversion + Consolidation ≥12 months + Undetectable HBV DNA + No cirrhosis	HBeAg seroconversion + Consolidation ≥12 months + Undetectable HBV DNA + No cirrhosis

Stopping guidelines: HBeAg negative patients

APASL 2016 ¹	EASL 2017 ²	AASLD 2018 ³
HBsAg loss + Consolidation ≥12 months or anti-HBs+	HBsAg loss	HBsAg loss
OR	OR	OR
NUC therapy ≥24 months +	May be considered in selected patients given the following:	
Undetectable HBV DNA on three occasions 6 months apart + No cirrhosis	Viral suppression ≥36 months + No cirrhosis	Compelling rationale
	+ Guaranteed post-NUC monitoring	

RCT: FINITE study

- 42 virally suppressed HBeAg negative patients (21 stop, 21 continue):
 - 88% Caucasian
 - 100% TDF
 - Mean Fibroscan 5.6 kPa
- Primary endpoint:
 - HBsAg loss at 144 weeks
- Conclusions:

TORONTO CENTRE FOR

LIVER DISEASE

- Higher HBsAg loss in stop arm at 144 weeks
- No serious adverse events
- Highly controlled cohort under strict observation!

Retreatment criteria:

- ALT flares
- Clinical relapse
- Decompensation

For patients who fulfilled any of these criteria, TDF was restarted at the discretion of the investigator

RCT: TORONTO STOP study

- 67 virally suppressed HBeAg- patients (45 stop, 22 continue):
 - 97% Asian
 - 7% ETV, 93% TDF
 - Mean Fibroscan 5 kPa
- Primary endpoint:
 - Sustained response (HBV DNA <2000 IU/mL) at 48 weeks
- Conclusions:

TORONTO CENTRE FOR

- NUC withdrawal has marginal benefits in Asians
- No serious adverse events

Time of retreatment
Subjects that achieved HBsAg loss

Response at 72 weeks:

	Stop vs. Continue	р
HBsAg loss	2.2% vs. 4.5%	1.00
HBV DNA <20 IU/mL	2.2% vs. 91%	< 0.005
ALT ≤ULN	47% vs. 82%	0.01
ALT ≤ULN + HBV DNA <2000 IU/mL	29% vs. 82%	< 0.005
Retreated	38% vs. N/A	

Retreatment criteria:

- HBeAg seroreversion
- Clinical relapse

Final decision was at the discretion of the treating physician

RCT: Stop-NUC trial

- **158 HBeAg negative patients** (79 stop, 79 continue):
 - 80% Caucasian
 - 39% ETV, 51% TDF
 - Mean Fibroscan 5.7 kPa

Primary endpoint:

HBsAg loss at 96 weeks

Conclusions:

TORONTO CENTRE FOR

- Higher HBsAg loss in stop arm at 96 weeks
- End of therapy HBsAg <1000 U/mL predictive of HBsAg loss
- No serious adverse events
- ALT flares respond well to retreatment
- Long-term monitoring is crucial

HBsAg loss

		Baseline HBsAg <1000 U/mL	Baseline HBsAg □27711⊕≪328	p-value
	No	18 (72%)	53 (98.1%)	0.001
HBSAg 1055	Yes	7 (28%)	1 (1.9%)	0.001

Results at Week 96: NUC stopping arm

	n (%)
HBsAg loss	8 (10.3)
No retreatment indicated	53 (67.9)
Retreatment indicated	6 (7.7)
Retreatment initiated	11 (14.1)
Total	78 (100)

Time to HBsAg loss

- There were six main retreatment criteria:
 - ALT flares (3)
 - Decompensation (1)
 - Physician discretion (2)

Cohort studies

Source	Number of patients	Race/ ethnicity	Pre-therapy HBeAg	HBsAg loss incidence
Chan	53	Asian	Neg	23% at 5 years
Hadziyannis [*]	33	Caucasian	Neg	39% at 5.5 years
Chen	188	Asian	Pos / Neg	24% at 6 years
Patwardhan [*]	33	N/A	Neg	N/A
Chi [*]	94	Mixed	Pos / Neg	3.1% annual rate
Hung [*]	73	Asian	Neg	47% at 6 years
Yao	119	Asian	Neg	55% at 6 years
Сао	82	Asian	Pos / Neg	10% at 2 years
Van Hees [*]	62	Mixed	Pos	N/A
Jeng [*]	691	Asian	Neg	13% at 6 years
Papatheodoridis [*]	57	Caucasian	Neg	25% at 1.5 years
Su [*]	100	Asian	Neg	0% at 2 years
Chen [*]	411	Asian	Pos / Neg	N/A

* Reports number of complications off-therapy

TORONTO CENTRE FOR

 Chan et al., Antivir Ther 2011. 2. Hadziy annis et al., Gastro 2012. 3. Chen et al., J Hepatol 2014. 4. Patwardhan et al., Aliment Pharmacol Ther 2014. 5. Chi et al., Aliment Pharmacol Ther 2015. 6. Hung et al., J Viral Hepat 2017. 7. Yao et al., Sci Rep 2017. 8. Cao et al., J Infect Dis 2017. 9. Van Hees et al., Aliment Pharmacol Ther 2017. 10. Jeng et al., Hepatol 2018. 11. Papatheodoridis et al., Antivir Ther 2018. 12. Su et al., J Infect Dis 2018. 13. Chen et al., Clin Microbiol Infect 2018.

RETRACT-B study

Update on the RETRACT-B study design and protocol presented at the HBV forum in 2019

- **Study design**: Retrospective cohort study (N = 1,556)
- **Study population**: CHB patients who discontinued NUC therapy from participating centers across North America, Europe, and Asia
 - <u>Inclusion</u>:
 - Virally suppressed at NUC withdrawal
 - HBeAg negative at NUC withdrawal: both HBeAg positive and negative at start of therapy
 - Exclusion:
 - Coinfection: HCV, HDV, and/or HIV
 - HCC diagnosis prior to stopping NUCs
 - Pegylated interferon therapy within 12 months prior to stopping NUCs

RETRACT-B study: Global, multi-center cohort

TORONTO CENTRE FOR LIVER DISEASE

RETRACT-B study: Characteristics

	Total Cohort (N = 1,556)
Age at NUC withdrawal: < 50 years / \geq 50 years, %	37/63
Sex: Male / Female, %	72/28
Race/ethnicity: Caucasian / Asian / Other, %	11 / 88 / 1
NUC prior to withdrawal: ETV/TDF, %	63/29
Total NUC duration, years, median (IQR)	3.0 (3.0 – 4.0)
Start of therapy HBeAg status: Negative / Positive, %	84 / 15
At NUC withdrawal	
Cirrhosis status: Non-cirrhotic / Cirrhotic, %	88 / 12
HBsAg , log_{10} <i>IU/mL</i> , mean ± SD	2.6 ± 0.8
ALT x ULN, median (IQR)	0.6 (0.4 – 0.8)
During off-therapy follow-up	
Number of follow-up visits, median (IQR)	6 (3 – 9)
Time between visits, months, median (IQR)	2.8 (2.0 – 5.0)
Total fallow up time manths madion (IOD)	194(80-398)

RETRACT-B study: HBsAg loss

TORONTO CENTRE FOR

Cumulative incidence of HBsAg loss:

3% at 1 year 7% at 2 years 10% at 3 years 13% at 4 years

- Adjusted HBsAg loss ~6 times higher among Caucasians vs. Asians (p <0.001)
- Adjusted HBsAg loss ~22 times higher among patients with end of therapy HBsAg ≤100 IU/mL vs. >100 IU/mL (p <0.001)

RETRACT-B study: Results

	4-year cumulative incidence (%)
Virological relapse (HBV DNA ≥2000 IU/mL)	83
Clinical relapse (HBV DNA ≥2000 IU/mL + ALT ≥2 x ULN)	55
ALT flare (≥5 x ULN)	31

- Cumulative incidence of retreatment was 30% at 1 year and 56% at 4 years off-therapy
- 19 patients developed hepatic decompensation:
 - Cumulative incidence of hepatic decompensation was 1% at 1 year and 2% at 4 years off-therapy
 - Higher among patients diagnosed with cirrhosis at any time point prior to NUC withdrawal
 - Higher among start of therapy HBeAg positive patients
- 16 patients developed HCC:
 - Cumulative incidence of HCC was 0.4% at 1 year and 1% at 4 years off-therapy
- 14 (1%) patients died among the total cohort

What we know: Flares

- Risk of severe ALT flares after NUC withdrawal may be associated with severity of virological relapse¹
- An ALT flare may not be a prerequisite for HBsAg loss,² and may result in complications if not retreated

Host-dominating or "effective" flare³

Virus-dominating or "ineffective" flare³

1. Papatheodoridis GV et al. 2018;68(2):415-424 2. Cao J et al. J Infect Dis 2017;215:581 3. Liaw YF, Hepatology 2021;73(2):843-852

What we know: Complications

- Case reports of patients who developed off-NUC complications, or descriptive information within a larger study
- Few studies comparing incidence of liver-related complications on- and off-NUC therapy
 - Most with small sample sizes
 - Most show no difference in HCC incidence
- However, rates of hepatic decompensation and HCC cannot be compared across studies due to differences in baseline criteria
 - Need a well-designed large and long-term RCT to answer this question!

What we know: Retreatment

- Current decisions on when to retreat largely based on physician discretion
- Virological relapse after stopping is universal \rightarrow poor criterion
- No retreatment criteria outlined in any of the three guidelines!
- Decision on when to retreat is crucial:
 - Not to early \rightarrow to potentially achieve HBsAg loss
 - Not too late \rightarrow to prevent liver-related complications

Conclusion

- Most existing studies are small, single-site studies that did not correct for selection or measurement bias
- Larger studies on stopping NUCs are from Asia which are not seldom driven by local policies and reimbursement criteria

Future direction:

- Better understanding of viral and host factors involved in the pathogenesis of CHB
- Identification of novel biomarkers and predictors of response after NUC withdrawal
- Off-NUC flare management strategies
- Standardization of stopping and retreatment criteria, and monitoring frequencies
- New antivirals and therapeutic strategies, including combination therapies \rightarrow more RCTs!

