Next Gen (deep) Sequencing Discussion

- 1) Intro A. Kwong (2 min)
- 2) Philosophical Considerations (7 min)

Section lead	On site	Teleconference	
Mike Otto	David Standring	Stuart Ray	
	Rich Colonno		

3) Technical Considerations (11 min)

Section lead	Lee-	On site	Teleconference
Jan van Doorn		Richard Barnard Ina vandenbroucke	Neil Parkin Patrick Harrington

4) Discussion – all (4 min)

Philosophical Considerations in Next Generation (Deep) Sequencing

Mike Otto

HCV DrAG Meeting #6 March 30, 2011 Berlin, Germany

Introduction

- Resistant variants almost certainly exist in each DAA-naïve patient
- They may be enriched during non-SVR DAAcontaining treatment
- They may decrease in proportion of quasispecies after non-SVR DAA treatment
- They might reduce efficacy of future DAA treatment

1. Utility of Studying Minor Species

- Clinical impact on response to anticipated/ongoing treatment?
- Clinical impact on regimen selection?
- Implications for viral evolution in vivo (hepatocyte turnover, replication space, fitness)

2. Relevance in Combinations Treatment Regimens

- Relevance likely to depend on therapeutic context
 - Interferon+ribavirin-containing regimens
 - Ribavirin-containing regimens
 - DAA-only regimens (drug concentration comparable to IC₅₀ of "mutant" virus)
 - DAA-only regimens (drug concentration greatly exceeding IC₅₀ of "mutant" virus)

3. Utility of Studying variants in Retreatment Patients

- Impact on clinical practice?
- Can predictive models be developed?

Technical Considerations in Next Generation (Deep) Sequencing

Lee-Jan van Doorn

HCV DrAG Meeting #6 March 30, 2011 Berlin, Germany

HCV ultradeep sequencing (UDS): technical issues

Workflow

Ultradeep/next gen seq

HCV NS5B

Potential sources for errors in ultradeep sequencing of amplimers (UDSA)

Sample preparation

- RNA isolation:
 - no specific technical requirements (high sensitivity/quality; same as for consensus sequencing)
 - Preferably: larger volume, elution in small volume
- Adequate sample 'representation':
 - IU/mL in sample \rightarrow copies per PCR \rightarrow sensitivity
 - Sampling bias: Representation of minority variants?

Dependence of Sensitivity of Detection of Minor Variants and Input Viral Load

 <u>Assume</u> that 200 µl plasma used for RNA extraction, 25% used for RT-PCR; RT successful for 20% of RNA molecules; minority variant present at 10% of total.

Viral load (copies/ml)	RNA copies in RT rxn	Amplifiable genomes in PCR	Copy no. (minor variant)
100,000	5,000	1,000	100
10,000	500	100	10
1,000	50	10	1

Provided by Neil Parkin

- Low viral load \rightarrow high sampling bias, high PCR bias
- Threshold ~10,000 IU/ml to perform UDS?

Amplification (Rev. transcription + PCR):

- High-fidelity enzymes RT and PCR step — (< 0.1% substitution error rate)
- Amplification bias
 - Robustness of PCR primer sets (genotypes/subtypes)
 - Optimized protocols (Mg²⁺, temperature,...)

Sequencing and data analysis

- Homopolymeric tracts
- Technical sensitivity (# of reads; forward and reverse; coverage per position)
- Analytical sensitivity (sample & viral load)
- Data analysis software (platform specific (454); Bowtie, CLCbio, home-brew).

Reporting issues

- frequency table listing all amino acid positions (also at nt level?), including technical sensitivity
- Assess impact on the protein level → key positions related to resistance
- % wildtype vs. mutant
- Include background sequencing error rate

Reporting to FDA

• No specific reporting format requirements.

Issues to cover (FDA-Division of Antiviral Products; DAVP):

- % of 'resistant' variant relative to wild-type
- absolute concentration of 'resistant' variant (i.e., extrapolating from viral load)
- specifically for long-term persistence analyses:
 - trends over time and modeling approaches to predict return of 'resistant' variant to pre-treatment background level
 - relationship, if any, between 'sensitive' sequence analysis results and population-based results (e.g., is there a relationship between duration while undetectable by population sequencing with time to undetectable by ultradeep sequencing?)
- some descriptive information on technical performance and limitations of the assay (e.g., sensitivity, sampling reproducibility, effect of HCV genotype/subtype, etc.)

Next Gen (deep) Sequencing Discussion

- 1) Intro A. Kwong (2 min)
- 2) Philosophical Considerations (7 min)
- 3) Technical Considerations (11 min)
- 4) Discussion all (4 min)