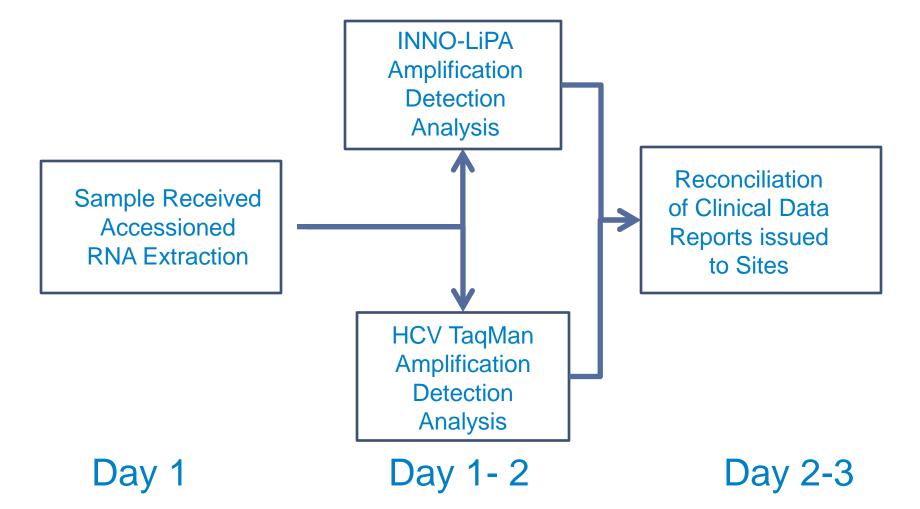


HCV Genotyping in Clinical Trials Perspectives from a Central Laboratory

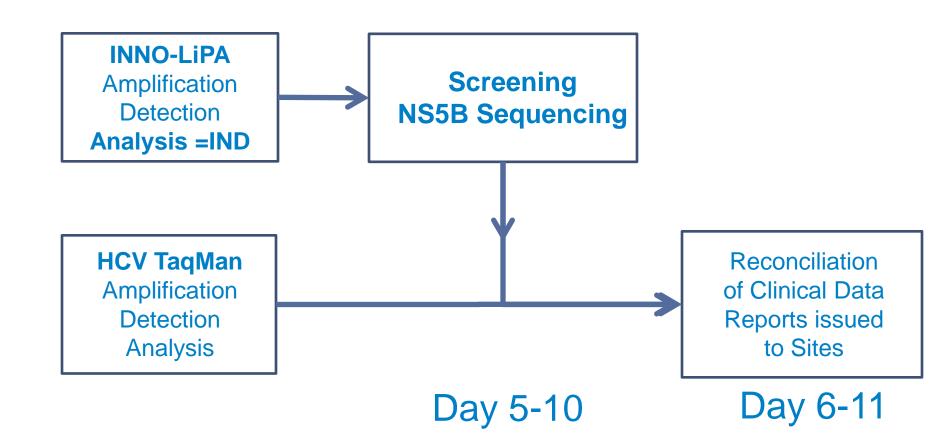
Dwight DuBois, MD Cenetron Central Laboratories Amsterdam April 23, 2013

Background


Performed HCV genotyping tests on > 20,000 samples with the INNO-LiPA HCV genotyping assays (Versions 1 and 2), since 2001.

Since 2006, INNO-LiPA HCV Genotyping Assay, Version 2.0, has been in use exclusively for Screening

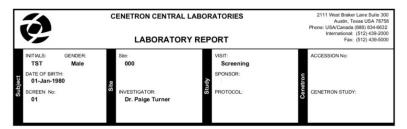
Data is pooled from 20+ studies (11,077 samples)



Typical Workflow for Molecular Testing

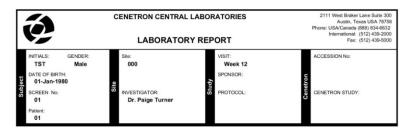
Workflow when Genotypes are IND by INNO-LiPA

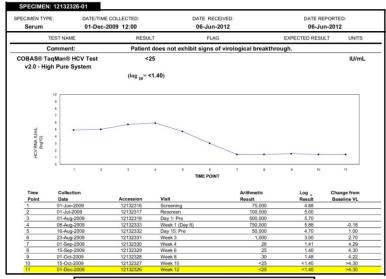
Genotype Reports


Genotype and Sub-type: ("Genotype 1A")

Genotype Only: ("Genotype 1, unable to subtype")

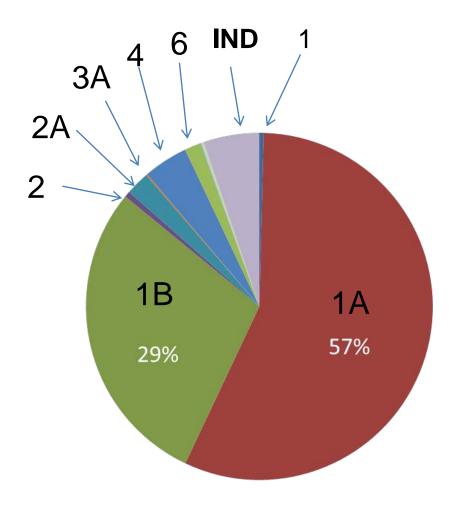
Indeterminate Results: ("Indeterminate")

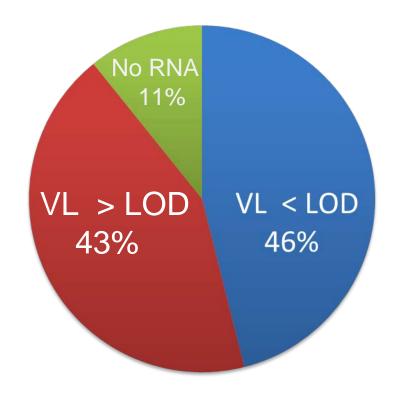

Screening and Longitudinal Reports



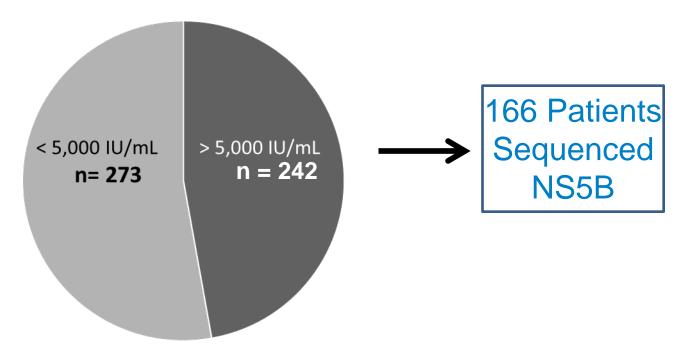
PECIMEN TYPE: Serum	01-Jun-200		DATE RECEIVED: 06-Jun-2012	DATE REPORTED: 06-Jun-2012	
TEST NA	ME	RESULT	FLAG	EXPECTED RESULT	UNITS
Genotyp	e	TYPE 1A			
COBAS® TaqMan® HCV Test v2.0 - High Pure System		75,000			IU/mL
		(log ₁₀ = 4.88)			

SPECIMEN TYPE: Whole Blood	01-Jun-2009		DATE RECEIVED: 06-Jun-2012	DATE REPORTED: 06-Jun-2012	
TEST NAME		RESULT	RESULT FLAG	EXPECTED RESULT UNITS	
IL28b (rs12979860)) Genotype	СС			


Investigator's Initials


Page 1 of 1

Total Patients Screened = 11,077


Viral Load Values in Indeterminate Group

Total Indeterminate n=575 (5.2%)

Total Indeterminates with VL > LOD (n=515)

Total Indeterminates n=575 (5.2%)

Causes for Indeterminate Results

- Low viral loads (no or very low signal)
- Genotype 1 samples with low signal in the Core region hybridization (appear to be GT1, but cannot rule out GT6) (90%)
- INNO-LiPA banding patterns does not fit into band pattern interpretation algorithm (rare genotypes) (10%)

Pooled data from 9 clinical trials (1882 patients screened)

1806 Paired Results were analyzed

Analysis included only specimens with a reported genotype or sub-genotype with the INNO-LiPA assay *AND* with a subgenotype determined by sequencing.

Sequencing performed *after* enrollment at outside specialty laboratory (not part of screening protocol)

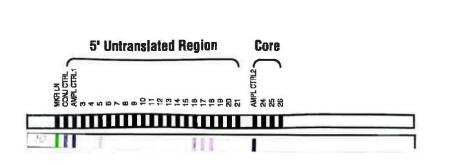
Definitions

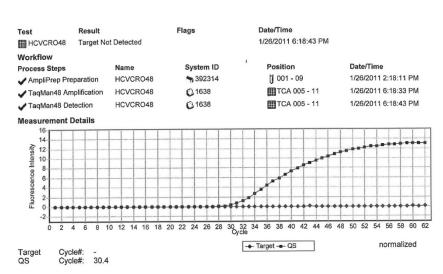
Major Discordance: Discordance at the genotype level, that could result in enrollment or randomization errors

Minor Discordance: Discordance at the subtype level

Genotype 1 Results

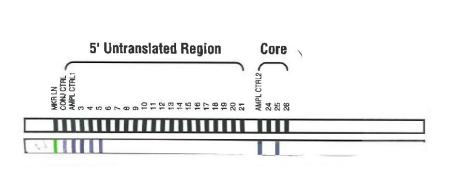
INNO-LiPA	No. of Samples	Major Discordance	Minor Discordance	Comments
1	14	0	N/A	
1A	1165	0	2	1B by sequencing
1B	617	0	2	1A by sequencing
Total	1796	0	4	

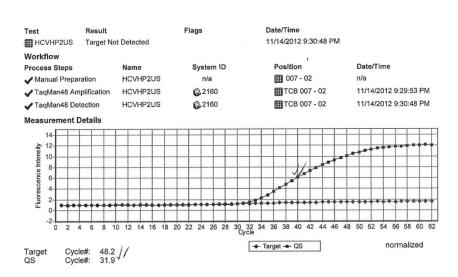

Genotype 4 Results


INNO-LiPA	No. of Samples	Major Discordance	Minor Discordance	Comments
4	58	0	N/A	
4H	2	0	2	4A by sequencing
4F	1	0	0	4A by sequencing
Total	61	0	2	

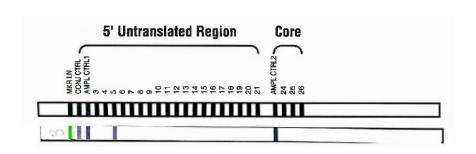
HCV genotype at Screening was a clear Genotype 4, but the VL was "No HCV RNA" detected by Roche HCV TaqMan Assay, version 1.0.

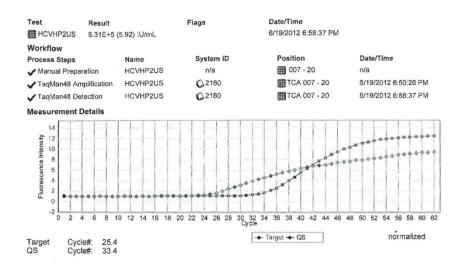
Sequencing of TaqMan primer/probe binding regions revealed unusual polymorphisms. Testing with Version 2 of the same assay: Viral load 450,000 HCV IU/mL.





HCV genotype at Screening was a clear Genotype 1A, but the VL was "Target Not Detected" by Roche HCV TaqMan Assay, for use with the High Pure System.


Sequencing of TaqMan primer/probe binding regions revealed 2 mismatches in the probe binding region.



HCV genotype at Screening "Indeterminate", and the VL was 831,000 IU/mL by Roche HCV TaqMan Assay, for use with the High Pure System. #########

HCV genotype at Screening was "Indeterminate." Banding pattern was suggestive of a 1A/1B mixture. NS5B sequencing at 2 different laboratories showed 1A and 1B, respectively.

Discordance with Historical Genotype Results and Results for Screening

HCV Genotype results recorded in patients' medical charts are frequently discordant with results in clinical trials. Invariably, the INNO-LiPA and NS5B sequencing results in the clinical trial agree with each other. Historical GT4 and GT6 are frequently determined to be GT1.

Sequencing is generally performed on **Baseline** samples, and the INNO-LiPA assay is performed on **Screening** samples. Apparent discordance can be a result of chain-of-custody errors.

Acknowledgements

Sophie Le Pogam and Isabel Najera Roche

Leen-Jan van Doorn DDL

Bill Symonds and Hongmei Mo Gilead

Brandon Harper and Yanqun Cai Cenetron

Slide Set

On line at <u>www.cenetron.com</u>

Questions:

ddubois@cenetron.com