Translational Pharmacoinformatics: Developing an Integrated Central Resource for Planning HCV Drug Interactions Research

Cara Felton, PharmD, Cindy Bednasz, PharmD, Gene D. Morse, PharmD University at Buffalo

### 10th HCV DrAG Meeting: Issues in HCV Drug Development April 23, 2013 Amsterdam The Netherlands





## **Translational Pharmacoinformatics:**

- Translational:
  - Pre-clinical  $\rightarrow$  Clinical  $\rightarrow$  Post-approval
- Pharmacoinformatics:
  - Use of information technology to assimilate drug information
  - Drug Development context:
    - Information technology to facilitate drug development

# ACTG Precautionary and Prohibited Medications Database

- Clinical research in the areas of HIV, Viral Hepatitis, TB and Inflammation presents:
  - Challenges in reviewing new drug interaction and pharmacokinetic data for protocol development
  - Potential for clinically significant interactions between these medications and commonly prescribed drugs
- The ACTG developed a *Precautionary and Prohibited Medications Database* resource in response to these challenges.

## ACTG Precautionary and Prohibited Medications Database

- Maintained by the University at Buffalo Pharmacology Specialty Laboratory (UB PSL)
- Utilized by ACTG and IMPAACT investigators
- Originally focused on drug-drug interactions between ARVs and non-ARVs
  - Expanded to include agents for:
    - Tuberculosis
    - Viral Hepatitis
- International expert review panel and editorial board created
  - ACTG Clinical Pharmacology Advisory Group (CPAG)
  - Review of newly available drug interaction and PK data presented in abstract form



https://actgnetwork.org/

## <u>Database</u>

## **Update Process**



- 1. Drug interactions and PK data available from conferences, journals, and industry
- 2. Data summarized and uploaded to nonsearchable database
  - a. Multiple sources may be used for a single drug-drug interaction entry
- 3. Summary assigned to and reviewed by clinical pharmacology expert
  - a. Accepted as submitted
  - b. Revisions required
    - i. Repeat submission / initial review process
- 4. Final acceptance approved by managing content editor
- 5. Summary made available on searchable database
  - a. Interpretation of data
  - b. Interaction designation
    - i. Precautionary or prohibited
  - c. References available



### ACTG Drug Interactions Database ...the Clinical Protocol Development Tool for Precautionary and Prohibited Medication Use



#### Home

#### **Key Features**

- Investigational Agents for HIV, TB and HCV
- Regional use of Traditional Medicines
- Pharmacogenomics
- Clinical Pharmacology Quality Assurance Program
- ACTG Pharmacology Specialty Laboratories
- ACTG International Pharmacology Specialty Laboratories

INSTRUCTIONS: To search for a specific ARV drug and a concomitant medication please separate drug names by semi-colon (example: phenytoin; delavirdine ). SEE FULL INSTRUCTIONS . You can also use the Keywords Glossary as keyword reference.

### Search

Admin Tools

# Applications

### **Protocol Development and Human Subject Protection**

- Protocol team accesses Precautionary and Prohibited Medications
- Protocol investigators access database from ACTG homepage
  - Check for drug-drug interactions among study medications
    - At enrollment
    - During study as needed



### **Co-Infection: Complex Drug-Drug Interactions**



# **Approved DAAs**

| Drug       | СҮР450                | Activity  | Transporters |                            |  |
|------------|-----------------------|-----------|--------------|----------------------------|--|
|            | Substrate             | Inhibitor | Substrate    | Inhibitor                  |  |
| Telaprevir | CYP3A4                | CYP3A4*   | P-gp         | P-gp<br>OATP1B1<br>OATP2B1 |  |
| Boceprevir | CYP3A4/5 <sup>+</sup> | CYP3A4/5* | P-gp         | P-gp                       |  |

\*Strong; \*Partial (BOC primarily metabolized by AKR)

Medications extensively metabolized by CYP3A and associated with severe adverse reactions at high concentrations are not recommended for coadministration with boceprevir or telaprevir. <sup>1,2</sup>

# DAAs in Development

| Drug          | CYP Activity                                                                                        | Transporters                      | Phase (as a single agent) |
|---------------|-----------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------|
| Daclatasvir*+ | CYP3A4 substrate <sup>3</sup>                                                                       | P-gp substrate <sup>3</sup>       | III                       |
| Faldaprevir*+ | CYP 3A4 substrate<br>3A4: Moderate intestinal and<br>hepatic inhibition <i>in vivo</i> <sup>4</sup> |                                   | III                       |
| Sofosbuvir*   |                                                                                                     | (Renal<br>excretion) <sup>5</sup> | III                       |

\*Also studied in combination with other DAAs; \*Also studied in combination with ARVs

<sup>3</sup>Bifano M et al. CROI 2012. Abstract 618.; <sup>4</sup>Sabo J et al. CROI 2013. Abstract 35.; <sup>5</sup>Cornpropst M et al. EASL 2012.

# DAAs in Development

| Drug         | CYP Activity                                                                                               | Transporters                                                                          | Phase (as a single agent) |
|--------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------|
| Ledipasvir*  | No CYP inhibition <i>in vivo</i> <sup>6</sup>                                                              |                                                                                       | III                       |
| Simeprevir*+ | CYP3A4 substrate <sup>7</sup><br>3A4: Mild intestinal<br>inhibition; no hepatic<br>inhibition <sup>8</sup> | P-gp substrate<br>P-gp: Mild<br>intestinal<br>inhibition; no<br>hepatic<br>inhibition | III                       |

\*Also studied in combination with other DAAs; +Also studied in combination with ARVs

<sup>6</sup>Lawitz E et al. J Hepatol. 2012 Jul;57(1):24-31.; <sup>7</sup>Ouwerkerk-Mahadevan S et al. IDSA 2012. Abstract 36620.; <sup>8</sup>Sekar V et al. EASL 2010. Poster 1076.

## **DAAs-ARVs in Combination**

|            | DAA + ARV Effects on Concentrations |       |                           |       |                     |      |                     |       |
|------------|-------------------------------------|-------|---------------------------|-------|---------------------|------|---------------------|-------|
| DAA        | Pl <sup>12</sup>                    |       | NNRTI <sup>13,14,15</sup> |       | InSTI <sup>16</sup> |      | Other <sup>13</sup> |       |
| Boceprevir | ↓ ATV/r*                            | ↓ BOC | $\downarrow \text{EFV}^*$ | ↓ BOC | ↔<br>RAL            | BOC⁺ | ↑ TFV               | ↔ BOC |
|            | ↓ LPV/r*                            | ↓ BOC | ↓ ETV                     | ↓ BOC |                     |      |                     |       |
|            | ↓ DRV/r*                            | ↓ BOC | 1 RPV                     | ↓ BOC |                     |      |                     |       |
|            | PI <sup>17,18</sup>                 |       | NNRTI <sup>18,19,20</sup> |       | InSTI               |      | Other <sup>18</sup> |       |
| Telaprevir | 1 ATV/r                             | ↓ TVR | ↓ EFV                     | ↓ TVR |                     |      | 1 TDF ↔ TVR         |       |
|            | ↓ DRV/r <sup>#</sup>                | ↓ TVR | ↔ FTV                     | ↓ TVR |                     |      |                     | ↔TVR  |
|            | ↓ LPV/r <sup>#</sup>                | ↓ TVR | 1 RPV                     |       |                     |      |                     |       |
|            | ↓fAPV/r <sup>#</sup>                | ↓ TVR |                           | ↓ TVR |                     |      |                     |       |

ATV=atazanavir; LPV/r=lopinavir/ritonavir; DRV=darunavir; fAPV=fosamprenavir; EFV=efavirenz; ETV=etravirine; RPV=rilpivirine; RAL=raltegravir; TFV=tenofovir; TDF=tenofovir disoproxil fumarate; BOC=boceprevir; TVR=telaprevir

\*Effect on concentration not reported

\*Not recommended for coadministration with BOC

<sup>#</sup>Not recommended for coadministration with TVR

<sup>12</sup>Hulskotte E et al. CROI 2012. Paper 771LB; <sup>13</sup>Kasserra C et al. CROI 2011. Paper 118.; <sup>14</sup>Hammond K et al. J Acquir Immune Defic Syndr. 2013
Jan 1;62(1):67-73; <sup>15</sup>Rhee E et al. CROI 2013. Abstract 537.; <sup>16</sup>de Kanter C et al. CROI 2012. Paper 772LB.; <sup>17</sup>Garg V et al. CROI 2011. Paper 629.;
<sup>18</sup>van heeswijk et al. CROI 2011. Paper 119.; <sup>19</sup>Garg V et al. Intl Wrkshp Clin Pharm HIV Ther 2011. Abstract PK\_13.; <sup>20</sup>Kakuda T et al. Intl Wrkshp Clin Pharm HIV Ther 2011. Abstract PK\_13.; <sup>20</sup>Kakuda T et al. Intl Wrkshp Clin Pharm HIV Ther 2012. Abstract O\_18.

# DAAs-ARVs Studied in Combination

|             | DAA + ARV Effects on Concentrations |        |                     |                        |       |                        |                     |                     |  |
|-------------|-------------------------------------|--------|---------------------|------------------------|-------|------------------------|---------------------|---------------------|--|
| DAA         | Pl <sup>21</sup>                    |        | NNRTI <sup>21</sup> |                        | InSTI |                        | Other <sup>21</sup> |                     |  |
| Daclatasvir | ⇔ATV/r                              | ↔ DCV* | ↔ EFV               | ↔ DCV*                 |       |                        | ↔TDF                | ↔ DCV               |  |
|             | PI <sup>22</sup>                    |        | NNRTI <sup>22</sup> |                        | InSTI |                        | Other <sup>22</sup> |                     |  |
| Faldaprevir | ⇔DRV/r                              | 1 FDV  | EFV <sup>+</sup>    | ↓ FDV                  |       |                        | ↔ TFV               | ↓ FDV               |  |
|             | Pl <sup>23</sup>                    |        | NN                  | NNRTI <sup>23,24</sup> |       | InSTI <sup>23,24</sup> |                     | Other <sup>23</sup> |  |
| Simeprevir  |                                     |        | ↔ EFV               | ↓ SPV                  | ↔RAL  | ↔ SPV                  | ↔ TDF               | ↔ SPV               |  |
|             |                                     | 1 34 0 | ↔ RPV               | ↔ SPV                  |       |                        |                     |                     |  |

ATV=atazanavir; DRV=darunavir; EFV=efavirenz; ETV=etravirine; RPV=rilpivirine; RAL=raltegravir; TFV=tenofovir;

TDF=tenofovir disoproxil fumarate; DCV=daclatasvir; FDV=faldaprevir; SPV=simeprevir

\*No change in concentration expected at normalized DCV doses

<sup>+</sup>Effect on concentration not reported

<sup>21</sup>Bifano M et al. CROI 2012. Paper 618.; <sup>22</sup>Sabo J et al. CROI 2013. Abstract 35.; <sup>23</sup>Ouwerkerk-Mahadevan S et al. IDSA 2012.;
<sup>24</sup>Ouwerkerk-Mahadevan S et al. CROI 2012. Paper 49.

## **DAAs in Combination**

| DAAs                         | Phase              | Population                             | Notes                                                                | w/ ARVs                                                                            |  |
|------------------------------|--------------------|----------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------|--|
| Daclatasvir +                | II <sup>9</sup>    | HCV monoinfection                      | +/- RBV                                                              |                                                                                    |  |
| Sofosbuvir                   | II                 | HCV monoinfection                      | +/- RBV;<br>Genotypes 2 & 3                                          |                                                                                    |  |
| Daclatasvir +<br>Simeprevir  | II                 | HCV monoinfection                      | CV monoinfection +/- RBV;<br>+ additional PEG-IFN &<br>RBV if needed |                                                                                    |  |
| Sofosbuvir +<br>Simeprevir   | $\mathrm{II}^{10}$ | HCV monoinfection<br>HCV monoinfection |                                                                      |                                                                                    |  |
| Sofosbuvir +                 | II                 | HCV monoinfection                      | Genotype 4                                                           |                                                                                    |  |
| Ledipasvir                   | $\mathrm{II}^{11}$ | HCV monoinfection                      |                                                                      |                                                                                    |  |
| Daclatasvir +<br>Asunaprevir | II                 | HCV-HIV co-infection                   | Genotype 1 or 4;<br>Null responders;<br>+RBV & PEG IFN               | Raltegravir<br>Tenofovir<br>Enfuvirtide<br>Emtricitabine<br>Lamivudine<br>Abacavir |  |

<sup>9</sup>Sulkowski MS et al. AASLD 2012. Abstract LB-2.; <sup>10</sup>Lawitz E et al. CROI 2013. Abstract 155LB; <sup>11</sup>Gane E et al. AASLD 2012. Abstract 229.

# Summary

- The ACTG Prohibited and Precautionary Medications Database is *well established* and is a resource for investigators developing and implementing research protocols.
- The Database has the *potential to be a wider resource* and facilitate planning for drug interactions research but would require:
  - Additional input of pre-clinical drug interactions and PK data
  - Drug interactions data not presented at conferences
- The database could provide a mechanism to *avoid duplication of research studies while identifying "gap" areas* that could form the basis of investigator-initiated research or RFAs.
- Post-approval data collection could be included as a mechanism to confirm or refute "healthy volunteer PK studies.

# Acknowledgements

### University at Buffalo Pharmacology Specialty Laboratory

- Jill Hochreiter, MT, ASCP
- Robin DiFrancesco, MBA
- Qing Ma, PhD
- Charles Venuto, PharmD
- Farzia Sayidine, BA
- Francesco Lliguicota, BA
  - Leah Andress, PharmD candidate

### Editorial Review Panel

- Alice Tseng, PharmD, Toronto
- Kimberly Scarsi, PharmD, Chicago
- Charles Chiedza Maponga, PharmD, Harare
- Erica Dobson, PharmD, Rochester
- Tim Cressey, PhD, Thailand
- Brookie Best, PharmD, San Diego

This project is supported by Award Numbers **UM1AI068636 and UM1AI068636-04** from the National Institute of Allergy and Infectious Diseases.