

HCV DRAG: Goals

- Produce consensus recommendations of appropriate methodology for HCV resistance testing
 - For drug/biologic development
 - For clinical practice
- Provide scientific guidance to facilitate discussion between industry and regulatory agencies in areas of HCV drug resistance

HCVDRAG: Methods

- Facilitated discussion between representatives from pharmaceutical/biotech companies, academic institutions and regulatory agencies
 - Two meetings per year
 - Teleconference/email
 - Working groups dedicated to specific topics
 - Sequencing Ann Kwong
 Phenotype Neil Parkin
 Clinical Chip Schooley
 Database tbd

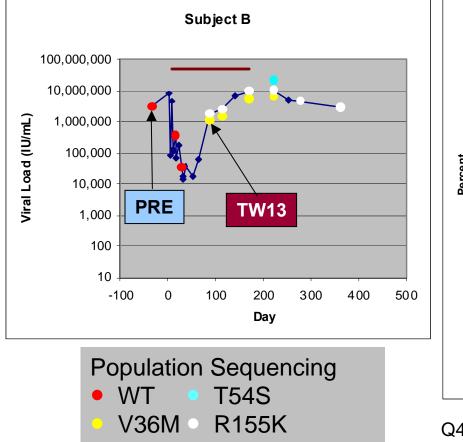
HCVDRAG: Measurables

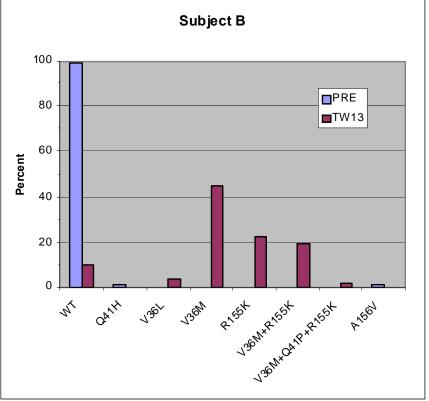
- Presentations/abstracts
 - HCV Resistance Workshops, HepDART
 - AASLD, EASL
- White papers/manuscripts
 - Consensus recommendations

HCVDRAG: 1st Meeting (18 May 07)

- Identified issues
- Classified issues:
 - Sequencing
 - Phenotype
 - Clinical
 - Other
- Formed working groups
- Defined timetables for action items

HCVDRAG: Process


- Within each working group, define issue categories
 - 1. Immediate recommendation
 - 2. Recommendation based on discussions within working groups and between WG's and DRAG
 - 3. Multiple possibilities to be described by working group with pro/con and context
 - 4. Insufficient data/methodology at this time, noted as issue


HCV DRAG: Sequencing questions

- Which samples should be sequenced?
- At what viral load do you try to obtain a sequence?

Example of resistance mutations in ontreatment rebound and at end of follow-up

200 mg boceprevir + peginterferon-α2b

Q41H and A156V variants detected at pre-treatment R155K mutation detected in follow-up

HCV DRAG: Sequencing questions

- Which samples should be sequenced?
- At what viral load do you try to obtain a sequence?
- What gene segments should be sequenced?

Near full-genome HCV1b resistance test Perspectives

Whole genome sequencing of a subset of PCR positive samples is currently under evaluation

Start-up of development and optimisation of this near-full genome genotypic resistance assay for other HCV geno- and subtypes

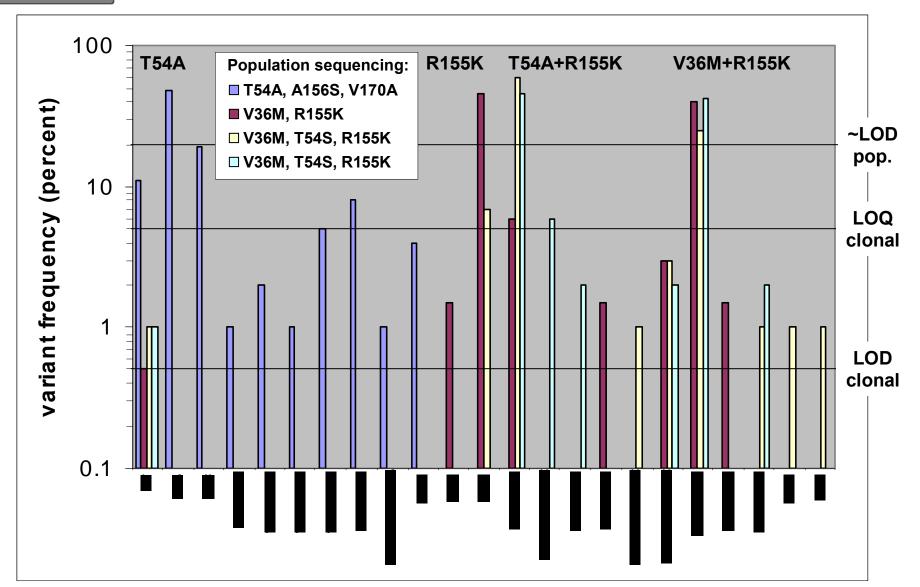
Advantage in clinical studies and in clinic:

 \Rightarrow near-full genome HCV genotypic resistance test can assess resistance in multiple combination therapies in one run

S. Van Dooren: sequence whole genome for combinations?

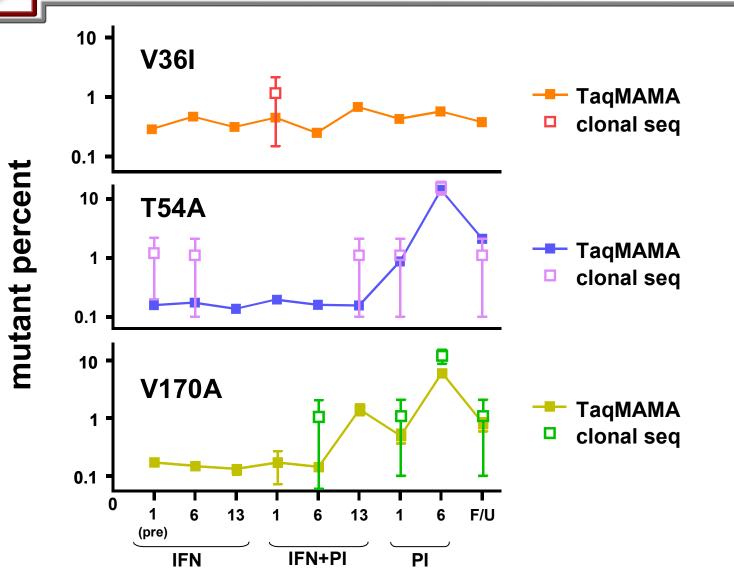
HCV DRAG: Sequencing questions

- Which samples should be sequenced?
- At what viral load do you try to obtain a sequence?
- What gene segments should be sequenced?
- Sequencing technologies
- Clonal vs population sequencing?
- Minority species detection?

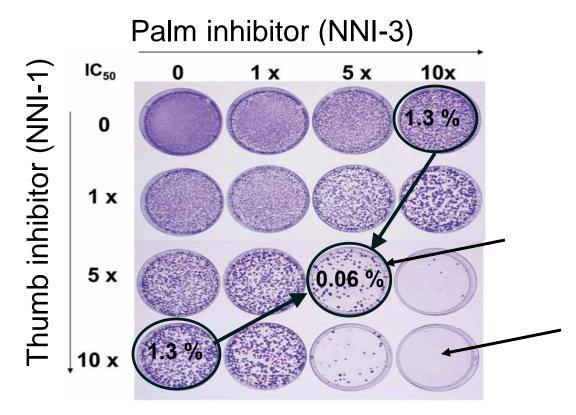


Genotype 1 WT residue	Mutations reported or observed in clinic	Mutations reported or observed in replicon
V36	A, M, L, T	
Q41	R, H, L	R
F43	S, C, L, V	S, C
T54	A, S, P	A, S
R155	K, Q, T, M, S, G	
A156	S, T, V	S, T
V170, I170	A, T, F	A, T

Blue: observed with clonal sequencing but not population sequencing



Less abundant variants show complex pattern of resistance mutations

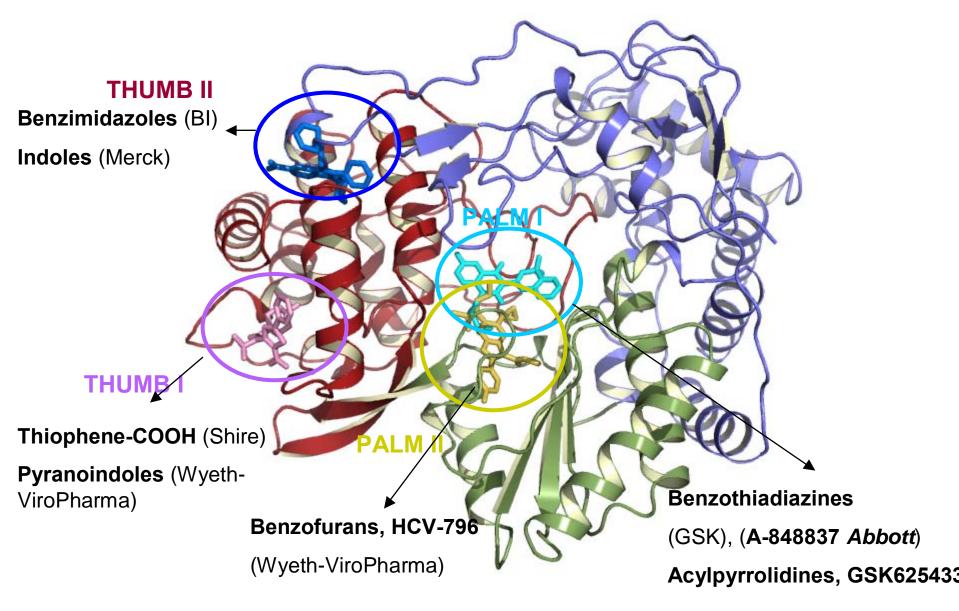


Quantification of resistant variants by allelespecific PCR

How would combination of antivirals affect the selection of resistance?

Targeting different sites of the polymerase compromises resistance selection

I. Najera: can this assay be used to assess synergy/antagonism?


2nd International workshop on Hepatitis C resistance and new compounds Boston 31 October-1 November 2007

Roche

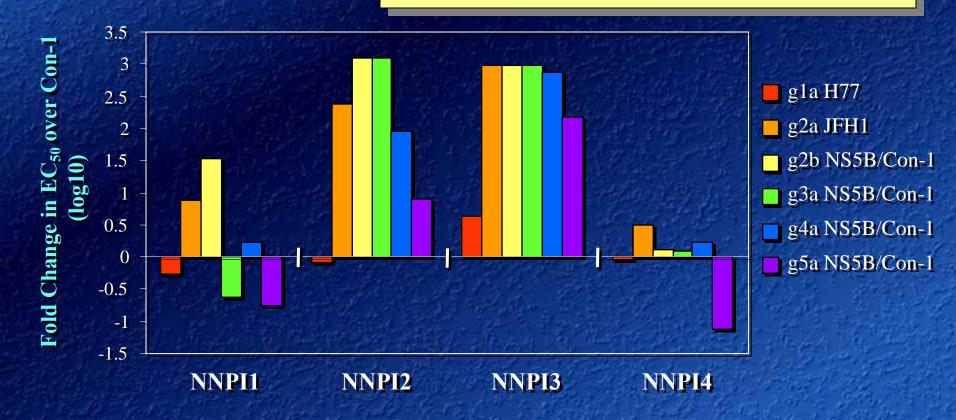
HCV DRAG: Sequencing questions

- Which samples should be sequenced?
- At what viral load do you try to obtain a sequence?
- What gene segments should be sequenced?
- Sequencing technologies
- Clonal vs population sequencing?
- Minority species detection?
- Nomenclature
- Mutation vs polymorphism
- Do we compare isolates to baseline or to consensus sequences?

HCV NS5B : 4 allosteric binding sites identified

Effect of L419I/I482L Substitutions on the Susceptibility of the Con-1 Replicon to NNPIs

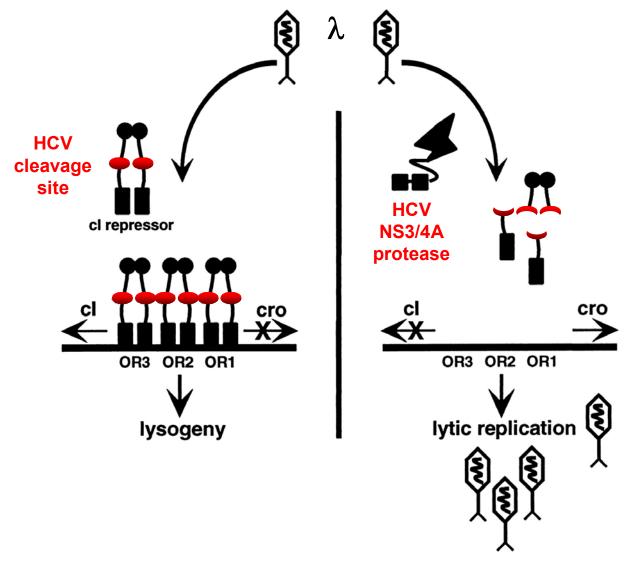
S. Shi: pol binding sites?


Fold Change in EC₅₀ over Con-1

Construct	Benz- imidazole NNPI1	Thiophene carboxylic acid NNPI2	Benzo- thiadiazine NNPI3	Benzofuran NNPI4	IFN
L419I	4	326	0.2	2	1
I482L	3	201	0.5	-1	1
L419I/ I482L	8	2238	0.2	3	2

Activity Spectrum of HCV NNPIs

S. Shi: NNI or NNPI?


Inhibitor Binding Site

HCVDRAG: Phenotype questions

- Methodology
 - Replicon vs full-length infectious system
 - Replicon systems
 - Chimeric cell-based systems
 - Enzyme (cell-free system)
- What should be amplified?

Co-expression in *E.coli* of a recombinant λ cl repressor containing an HCV cleavage-site with a HCV NS3/4A protease results in the induction of the phage's lytic functions

A chimeric reporter system with desirable attributes

- » NS3 activity liberates a secreted reporter from intracellular membrane tether
- » Technical advantages relative to HCV replicon
 - No "cassette" issues
 - Transfection of plasmid DNA, not transcribed RNA
 - Robust suspension cells used, not Huh7
 - Homogenous assay for NS3 activity
 - Same reporter plasmid used for clonal sequencing

ssette NS3 NS3 cleavage sites **CMV** promoter S3 hel Secreted lu Transfection into suspension cells Homogeneous assav Active NS3/4 AND BURDER

InterMune[®]

Phenotyping assay faithfully reports potencies against variants identified using in vitro resistance studies

S. Seiwert: enzyme vs replicon?

» Previous results from in vitro selections

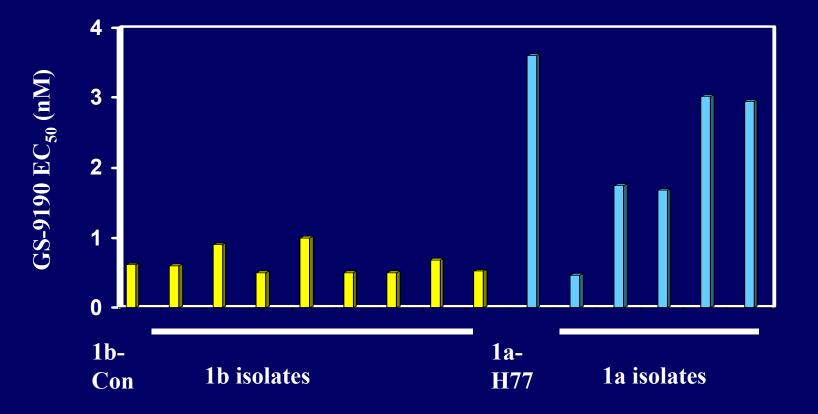
- Substitution at D168 appears to be fundamental to ITMN-191 resistance
 - All replicons carry substitution at D168
 - As selection pressure increases additional substitutions are required
- » Characterization of potency against in vitro identified substitutions by clonal analysis (duplicate measurement)

	Phenotyping assay		HCV replicon	
Variant	EC ₅₀ (nM)	Fold Change	EC ₅₀ (nM)	Fold Change
Wild Type	1.5	-	1.8	-
D168V	33	22-fold	205	114-fold
D168A	134	90-fold	430	239-fold
D168V + A156V	~3,700	~2,467-fold	~3168	~1,760-fold
D168A + F43S	>6,000	>4,000-fold	>10,000	>5,000-fold

Similar rank order potency reported by replicon and phenotyping assay

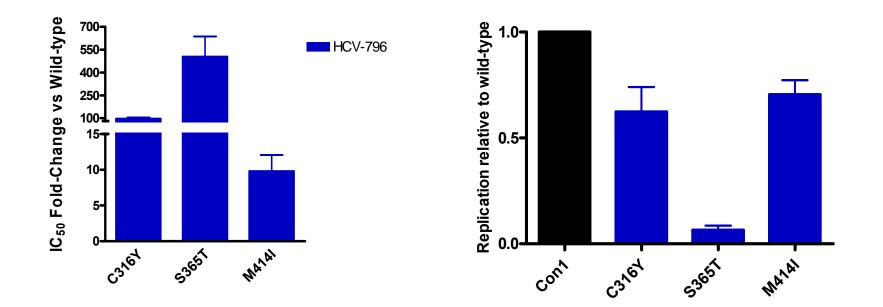
InterMune[®]

HCV DRAG: Phenotype questions


- Methodology
 - Replicon vs full-length infectious system
 - Replicon systems
 - Chimeric cell-based systems
 - Enzyme (cell-free system)
- What should be amplified?
- Standardization
- Minority species
- Interpretation

Summary of *In Vitro* Activity Spectrum of PF-00868554

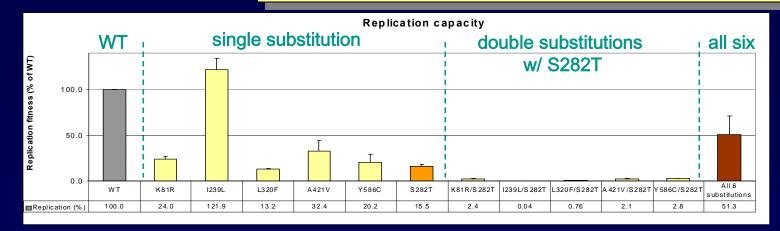
Genotype of NS5B	Mean EC ₅₀ (µM)	Range EC ₅₀ (µM)
1 (24 strains)	0.059	0.0088 - 0.087 (H77 = 0.39)
2 (4 strains)	15	11 - 17


Susceptibility of Chimeric Replicons Carrying Patient Polymerase Gene to GS-9190

HCV DRAG: Phenotype questions

- Methodology
 - Replicon vs full-length infectious system
 - Replicon systems
 - Chimeric cell-based systems
 - Enzyme (cell-free system)
- What should be amplified?
- Standardization
- Minority species
- Interpretation
- Replication capacity

Replication capacity can affect the ease of selection of the resistant mutants


C316Y confers high level resistance and has good replication capacity S365T confers high level of resistance but has low replication capacity M414I has good replication capacity but confers low level resistance A balance between replication capacity and level of resistance is required for selection

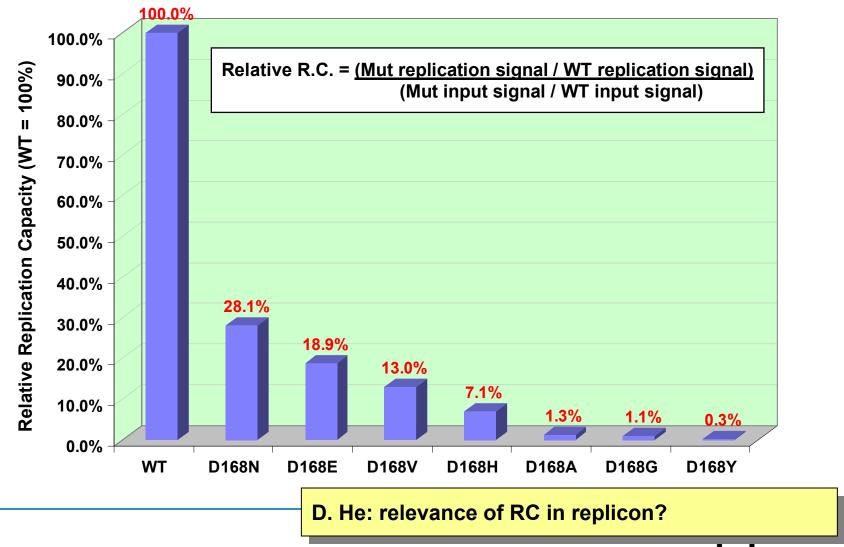
2nd International workshop on Hepatitis C resistance and new compounds Boston 31 October-1 November 2007 Roche Palo Alto

Roche

Effect of NS5B mutations on the replication

W.-R. Jiang: relevance of RC in replicon?

Transient replicon assay mean $EC_{50} \pm SEM$ (μM)


	WT	S282T	6-mutant
PSI-6130	0.82 ± 0.04	2.51 ± 0.29	0.74 ± 0.04
NM107	2.12 ± 0.19	46.3 ± 17.2	1.62 ± 0.53

- S282T co-exits with K81R, I239L, L320F, A421V, Y586C under high selective pressure with PSI-6130
- Combination of S282T with K81R, I239L, L320F, A421V, Y586C increased replication capacity from 16 % to 51%
- The 6-mutant replicon exhibits similar sensitivity to PSI-6130 and NM107 as compared with the WT replicon

capacity

Wen-Rong Jiang et al.

Relative replication capacity of 1b-N D168 mutant replicons without drug treatment

HCV DRAG: Clinical questions

- Standard repositories
 - Clinical strain library
 - Compounds?
- Early clinical trial design recommendations to assess resistance
- How do we promote combination of investigational agents?
- Database
- Correlation between baseline resistance and SVR
- Clinical cutoffs
- Genetic barrier

HCVDRAG: Today's Agenda

HCV DRAG/HCNG Group	Jean-Michel Pawlotsky
Sequence Analysis Working Group	Ann Kwong
Phenotype Working Group	Neil Parkin
Clinical Working Group	Chip Schooley
Moving forward/Next steps	Group