Cardiovascular Risk in HIV Studies Summary Table

Ref\#	$\begin{aligned} & \text { Studyl } \\ & \text { Author } \end{aligned}$	Objective	Study Design	Endpoints	Analysis Methodology	Follow up (Calendar Years)	$\begin{array}{\|c\|} \hline \text { Sample Size } \\ \text { Patient Years } \\ \hline \text { (PY) } \\ \hline \end{array}$	M/F	Age $\{$ mean $\}$ Median (LOR) (IQR)I	Ethnicity Race	Key Results $[95 \% \mathrm{Cl}]$	Author's Conclusions
1	Veteran's Administration/ Bozzette et al	Evaluate trends in rates of cardiovascular jand cerebrovascular ddisease in patients \|receiving HIV care Evaluate the \|relationship between the risk of cardio/ cerbrovascular disease and use of jantiretroviral therapy	Retrospective analysis based on patients receiving HIV care at VA facilities	Admissions for and/or ¡death from cardiovascular and/or cerebrovascula disease, death from !any cause	Calculation of rates per 100 PPY; Kaplan-Meier curves; time to event modelling; tmodels Models controlled for year of first care for HIV , race or ethnicity, sex, age, risk ffactor for HIV , severity of illness, history of AIDS, drus tabuse, previous Rx for \|vascular disease, diabetes, hyypertension, hyperlipidemia, smoking	8.5 yrs (1993-2001)	PY)	.9\% F	$\begin{array}{ll} 71 \% & 35-55 ; \\ 17 \%<35 \end{array}$		Admissions: 1207 for cardiovascular disease, 1764 for cardio- or cerebrovascular disease, and 2006 admissions or deaths from cardiofor cerebrovascular disease Admissions for cardio/ cerebrovascular disease decreased from 1.7 to 0.9 per 100 PY. All cause mortality decreased from 21.3 to 5.0 deaths per 100 PY Antiretroviral drug use not associated with risk for cardio/cerbrovascular events but associated with reduced all cause mortality Hazard for admission higher with increasing ןage, more advanced HIV disease status, AIDS defining illness, Hx of Rx for cardiovascular risk factor, pre-existing vascular disease, earlier date of first care for IHIV	Clinical benefit of antiretroviral therapies not diminished by increase in rate of cardiovasular or cerbrovascular events o frelated mortality
1A	French hospital database on HIV (FHDH)/ Krause et al	Analyze the impact of PI on the risk of MI tamong men	Retrospective analysis of data obtained from FHDH	$\left\{\begin{array}{l}\text { Incidence of MI IIDC } \\ \text { code 410; } 121 \text {) }\end{array}\right.$	Incidence rate approach, compared to French genera male population calculation of standard moribity rate (SMR) Association of risk factors lusing Cox analysis; models , ajdusted for age, initial CD4, NRTI, NNRTI and PI treatments	4 yrs (1996-1999)	$\begin{aligned} & 34,976 \text { (88,029 } \\ & \hline \mathrm{PY}) \end{aligned}$	0\%	37.7 (± 9.1) 41.9 ($\pm 8.2)$ ffor MI	ot provided	RH for MI in patients exposed to PI was 2.56 [$[1.03,634]$; age was the only other signficiant factor in the model Risk for MI increased with increasing exposure time, with SMR of $0.8,1.5$, and 2.9 for exposures of < 18 months, 18-29 months, and ≥ 30 months, respectively	Duration-related effect relationship between PI and MI , with a higher MI incidence rate among men exposed to P for 18 mths or more
1B	Medi-Cal study/Currier et al	Examine the relationship between ART exposure and CHD incidence	Retrospective analysis of Medi-Cal claims of HIV + patients	CHD incidence (defined by ICD codes)	Multivariate log-linear ;regression analysis to determine the relative risk of for comorbid covariates of \|diabetes, hyperlipidemia, kidney disease \& hypertension	5 ${ }^{\text {yrs (1995-2000) }}$	28,513	\|not	not provided	ot provided	Incidence (non adjusted)of CHD/100 PY by lage category: 1.08 (18-33 yrs), 1.74 (34-49 yrs), 3.13 ($50-65 \mathrm{yrs}$), 4.90 (abv 66 yrs) Relative risk of CHD comparing individuals receiving ART to those not receiving ART: 2.06 ($18-33$ yrs) ($\mathrm{P}<0.001$), 1.08 ($34-49 \mathrm{yrs}$) ($\mathrm{P}>0.3$), 0.79 ($50-65 \mathrm{yrs}$) ($\mathrm{P}>0.05$), 1.15 (abv [66 yrs) ($\mathrm{P}>0.6$]	ART associated with increased risk of CHD in young (18-33) but not older individuals. Co-morbid conditions associated with CHD in general population were important predictos of CHD in the study population

Ref\#	Study/ Author	Objective	Study Design	Endpoints	Analysis Methodology	Follow up (Calendar Years)	Sample Size Patient Years (PY)	M/F	$\begin{gathered} \text { Age }\{\text { mean }\} \\ \text { Median } \\ \text { (IQR)] } \end{gathered}$	Ethnicity Race	Key Results [95\% CI]	Author's Conclusions	
2	D:A:D Study/ Friis-Møller et al	Determine incidence ;of MI. Assess association of combination jantiretroviral treatment (CART) exposure with	Prospective, multinational observational cohort study (11 established cohorts)	Acute MI	Incidence rate approach, with primary outcome presented as relative rates Models controlled for age, ©BM1, race, family Hx of CVD, ssmoking, sex, HIV risk tgroup, cohort and preexisting CVD	6 yrs (1999-2005)	23,468 (36,199	.1\% F	[39 (34-45)]	75.6\% White 18.3\% Black 6.1% other	Overall incidence of MI 3.5 events per 1000 \|PY (126 events) RR of MI increased with longer CART exposure; Adjusted RR 1.26 (1.12-1.41 p<0.0001) Other independent factors associated with increased risk: older age, smoking, CVD Hx, male sex, higher total serum cholesterol, diabetes mellitus	CART independently associated with 26\% increased risk of MI per year exposure Absolute risk of MI remained low and should be balanced with benefit of CART	
3	Randomized Clinical Trials/Coplan et al	incidence of Ml among tparticipants of randomized clinical trials receiving PIs to jNRTI therapy alone	Retrospective analysis based on 30 Phase IIIIII industry sponsored double blind, randomized studies	Cases of MI from investigator reports	MI rate per 1000 PY; Relative Risk (RR) for M in tpatients taking PI vs NRTI ;only TT confined to double-blind, \|randomized, active control	phase; inclusive analysis ;covering double-blind and ;open-label phases	Mean months on PI: 11.4-14.3; mean months on NRTI only: 5.2 - 12.0 (prior to 1999)	$\|$10986 (7620 PY for randomized phase; 11651 PYY for randomized ras extension plus phase)	18\% F	[137-38\}	not provided	10 MI in randomized phase and 19 cases in trandomized plus extension phase; rates per 1000 PY for PI vs non-PI were 1.38 vs. 1.18 and 1.82 vs 1.05 for randomized and trandomized plus extension Absolute difference in MI risk (PI to control): 1+0.77 (-0.71, + 2.26); combining both phases for all studies, overall stratified RR was 1.69 [[0.54, 7.48]	Study did not reveal a dramatic increase in MI risk during the first year of PI exposure; however upper limit of Cl indicates there may be up to 2.3 additional MIs per 1000 PY Small number of cases and wide Cl 's make calculation of relative and absolute trisk impossible.
4	Iloeje et al	Quantify association between PI exposure fand CVD events	Retrospective cohort analysis of a prospectively collected database (HIV \|Insite Database)	First CVD event (MI, angina, CAD, (PCA/CABG, stroke, TIA, PVD)	Cox proportional hazards tmodels; adjusted HR Models controlled for age, isex, race, weight, PI exposure,hyperlipidemia, CVD, DM, HTN, smoking, IV drug use, cocaine use	\mid Median of 2.8 yrs $(1996-2002)$	6,711	13.3\% F	38 [18-88]	58.6\% Whites 27.8\%AA 13.6\% Other	93 CVD events (rate 1.6\% in Pl and 0.5\% in non PI) and 74 CHD events (rate 1.3% in PI fand 0.4% in non PI), Adjusted HR all CVD events for Pl use was 1.99 [0.95-4.14]; CHD model HR 2.13 [$[0.91,4.95$]; PP exposure >60 days (subset !analysis) HR 2.10[1.00, 4.40]	Pl use doubles the risk of developing both CVD and CHD events. Greater risk sseen in middle aged patients Absolute event rates remain low. Prolonged exposure may increase event ;rates, especially as population ages	
5	HOPS/ Holmberg et al	Determine whether trate of MI , angina, cerebrovascular paccident (CVA) is increased in patients taking Pl's	Prospective observational cohort based on 9 clinics in the USA	Verfied MI, angina, CVA events	IIncidence per 1000PY; Cox \|proportional hazards panalysis (HR); multivariate logistic regression models (OR) Models controlled for hypertension, smoking, diabetes mellitus, age, sex	(1993-2002)	$\begin{array}{\|l\|l\|} \hline 5672 \\ \hline \mathrm{PY}) \\ \hline \end{array}$	18\% F	\{42.6\}	$\begin{aligned} & 38 \% \text { Non } \\ & \text { White } \end{aligned}$	\|21 MI events; 1.42/1000 PY for PI, 0.46/1000	PY for non-PI Unadjusted HR of MI for PI: 8.06 [1.14,56.8], but not significant in controlled model ($\mathrm{p}=0.065$); adjusted OR 4.92 [1.3-32.3] 15 angina events; OR for PI 1.93 [0.63, 5.96] Most patients with events also had traditional trisk factors	Use of PI may be associated with MI and perhaps angina

Ref\#		Objective	Study Design	Endpoints	Analysis Methodology	Follow up	Sample Size Patient Years (PY)	M/F	$\left\{\begin{array}{c}\text { Age }\{\text { mean }\} \\ \text { Median } \\ (1 Q R)]\end{array}\right.$	Ethnicity Race	Key Results $[95 \% \mathrm{Cl}]$	Author's Conclusions
6	$\begin{aligned} & \text { Kaiser } \\ & \text { Permanente/ } \\ & \text { Klein et al } \end{aligned}$	Estimate the coronary theart disease (CHD) jand MI rate in KPNC Ipatients, stratified by PI and other ART use Compare rate in HIV+ ןpopulations to HIV\|populations Describe prevalence of classic CHD risk factors in HIV+ and HIV- patients	Retrospective analysis of the KKPNC database	Confirmed hospital admissions with primary discharge diagnosis of CHD (ICD 9 codes)	Events per PY of follow up, tage adjusted event rates	$\left\{\begin{array}{l}\text { HIV+:Mean 4.3, } \\ \text { median 4.5 years } \\ \text { (1996 -present) HIV } \\ : \text { mean 5.4, median } \\ 6.5 \text { years } \\ \end{array}\right.$	4,408(18,792 \|PY) HIV+ patients, and 39,425 HIVpatients !(211,221 PY)	0\% F	\|not provided	not provided	in HIV+: 100 CHD events (65 MII); age adjusted event rate of CHD and MI for HIV + : ;6.6 [5.0,8.1] and 3.8 [2.7, 5.0]; for HIV;controls 3.3 [3.0-3.5] and $2.6[2.4-2.8]$, with p \|values of <0.001 and 0.03 for CHD and MI respectively No clear trend for CHR or MI with increasing length of PI use Prevalence of CHD risk factors in all HIV+ patients: hypertension 38%, smoking 21%, diabetes mellitus 16% and hyperlipidemia 5%	Increased CHD and MI hospitalization in HIV+ compared to HIV-; risk factors for CHD were frequent in patients with events Patients started on Pl-containing HAART do not exhibit increased risk for CHD 'compared to patients not exposed to Pl
7	Maryland Clinical Cohort/ Moore et al	Assess incidence of and factors associated with CHD and CVD	 \|Nested case control, with 5 non CVD/CHD controls per dase, matched on enrollmen tup	CHD (M1 or unstable tiangina) CVD (ischemic stroke or TIA)	Event rates per 1000 PY ; Mantel-Haenszel chi-square and conditional regression tanalysis	(post 1996)	Total 2671 $(7.330 \mathrm{PY}) ;$ 78 cases and -336 controls	$\begin{aligned} & 42 \% \text { and } \\ & 32 \% \mathrm{~F} \\ & \hline \end{aligned}$	46 and 41 yrs	76% and 80% AA	43 CHD and 37 CVD events; CHD/CVD risk associated with older age, higher cholesterol, \|prior diabetes, prior hypertension, higher ;CD4, Pl use and d4T use Multivariate analysis: age, hypertension, total icholesterol and d4T use independently passociated with CHD/CVD risk Race, IVDU, and HIV-1 RNA levels were not associated with risk	Incidence of MI and CVD are 2-3 times higher the expected national age, sex, race based rates
8	HERS/ Gardner et al	Examine renal, CVD diabetic and hepaticspecific hospitalization trates in HIV+ women	Prospective multicenter cohort study	Diagnosis specific thospitalization: non!acute renal, cardiovascular, diabetes mellitus, defining		mean 4.5 yrs (1994 $2000)$	885 HIV+ ; 425 high risk HIVneg	100\% F	not provided	61\% AA 17\%Hispanic	360 CDV specific hospitalizations,; overall empirical event rate of 9.5. In HIV+ women, compared to 1994, the \}adjusted RR for CVD hospitalization in 1997 was 1.8 ($p=0.02$), in 19982.1 ($p<0.01$) and in 1999/2000 2.0 ($p=0.02$)	Hospitalization rates for CVD doubled (hepatic conditions increased 10-fold) Close monitoring of non-AIDS risk factors for morbidity is warranted
9	$\begin{aligned} & \text { APROCO/ } \\ & \text { Leport et al; } \\ & \text { Saves et al } \end{aligned}$	Estimation of risk for CVD morbidity in HIV patients receiving P compared to a sample of general population	Prospective follow up within French APROCO cohort (every 4 M); cross-sectional lanalysis of risk at M12 or M20; controls derived from \|stratified	Risk for CVD estimated \|using predictive models (PRIME model and AAnderson model from Framingham)	Relative Risk Risk factors: BMI, smoking, blood pressure, W/H, cholesterol (total, HDL, LLDL), triglycerimia, fasting blood glucose	mean ART 26 M tand mean PI 13M; (May 97 - June 98)	$\left\lvert\, \begin{aligned} & 274 \mathrm{HIV}+; ~ 1038 \\ & \text { controls } \end{aligned}\right.$		Restricetd to 35-44	not provided	BMI . Hypertension and HDL were lower in lHIV+ men compared to MONICA sample but tprevalence of smoking, W/H, triglyceridemia iwere higher; similar trends observed for women; similar trends shown for populations laged 45-54 5 yr RR for CHR was 1.2 for men and a. 159 wor women; or 1.39 and 2.17 in women, depending on model, $\mathrm{p}<10^{6 ;}$ Risk attributable to smoking was 65% and 29\% for men and women	HIV+ patients have aa particular therogenic profile, rsulting in moderate but significant increased CH risk

Ref\#		Objective	Study Design	Endpoints	Analysis Methodology	Follow up (Calendar Years)	Sample Size Patient Years (PY)	M/F	$\begin{array}{\|c\|} \text { Age }\{\text { mean }\} \\ \text { Median } \\ \text { (IQR) }] \\ \hline \end{array}$	Ethnicity Race	Key Results [95\% CI]	Author's Conclusions
9A	$\begin{aligned} & \text { SMART study/E\| } \\ & \text { Sadr et al } \end{aligned}$	IComparison of CHD risk factors among HIV+ men and women on HAART enrolled in the SMART study	Crossectional estimation of CHD risk factors among patients enrolled in the SMART study; baseline icharacteristics, lab assays and EKGs evaluated; 10 yr \|risk of CHD calculated using Framingham equation Baseline data presented \|here; study will assess effect of treatmenttype of \|reatment	Framingham Scores and other CHD risk factors	\% men and women at risk (baseline data presented;) Blood pressure therapy used las indicative of stage I Thypertension; conditions for metabolic syndrome ;assessed Risk factors: BMI, MI/stroke history, EKG abnormalities, TGL, LDL, HDL, BP therapy, diabetes, smoking, metabolic tsyndrome, Framingham , scores		tcases ${ }^{\text {HIV+ }}$	[24.9\% F	\{44.8\} y ys	38\% African Americans, 16.2\% Latino, 45.8\% White	97.4\% HAART experiencedl; median baseline tand nadir CD4 cell counts were 598 cells $/ \mathrm{mm}^{3} \& 258$ cells $/ \mathrm{mm}^{3} ; 69 \%$ had viral load <400 copies; 28% had prior AIDS diagnosis 7.8% of men and 0.6% of women had Framingham high/very high 10 yr risk for CHD; 26.1% men and 31.5% of women had :MI/strie, major EKG, metabolic syndrome, or high/very high risk	Significant number of men and women in SMART are at a high risk of CHD based Ion Framingham risk, history of MI and stroke, prevalance of metabolic jsyndrome and major EKG abnormalities
10	Wall et al	Estimate risk of ischemic CHD in HIV+ patients on different ART regimen, based on ATP3 Framingham \|score	Prospective evaluation of a convenience sample of $\mathrm{HIV}+$ patients and uninfected controls; cross-sectional analysis	Estimation of CVD risk using the Framingham Point Scoring System	Comparison of HIV+ patients ;on PI to non-PI,; risk factor jassessment Risk factors included: smoking, hypertension, low HDL cholesterol, family Hx of premature CVD, older age,		111/125 HIV+; 25/49 controls were evaluated	10% F in HV+ 53\% F in HIV-nes	41 in HIV+ 36 in HIV- neg	In HIV+: 65\% White 35\% AA In HIV-neg: 76\% White 14\% AA	4\% median risk for CVD progression in HIV+ cohort vs 1% in controls; 6% for Pl using HIV+ vs 3% in non-Pl using individuals	Significant prevalence of risk for !progression of CVD in HIV infection \|Longitudinal studies needed to assess changes in risk over time
10A	Hadigan et al	Estimate the 10-year risk of CHD in HIV+ patients with fat redistribution compared to risk estimate in matched non-HIV subjects from Framingham	Comparison of risk between HIV+ with fat redistribution (HIV+ LD+) and matched tcontrols; HIV+ without fat redistribution (HIV+ LD-) and Imatched controls HIV+ LD+ were matched for sex, age and BMI wifh subjects from Framingham; ,substudy matched for sex, lage, BMI and W/H HIV+ without fat redistribution (HIV+ LD-) were matched for age and BMI	Estimation of CHD risk using the Framingham Point Scoring System	Consecutive patients (age 18-60)enrolled; exclusion criteria: change in ART, Hx diabetes mellitus, previous Rx with antidiabetic, use of hormones, steroids, active jalcohol/substance abuse 10-year risk estimates (sex ispecific) incl age, total and HDL C, S/DBP, diabetes, smoking CHD events: angina pectoris, Ml and death due to CHD Analysis on total patient population as well as stratified by sex	$\left\{\begin{array}{\|l} \text { (HIV+1:998-1999; } \\ \text { controls 1991- } \\ \text { 1995)) } \end{array}\right.$	HIV+ LD+: 91; controls 273; HIV+LD-: 30, ;controls 90)	29\% \|40\%F (LD)	$\{44.6\}$ and Imen; \{39.5 and 40.6$\}$ for women	ot provided	Estimated 10-year risk significantly higher in HIV+LD+ (7.4 ± 0.6 vs 5.3 ± 0.3); for men only, 9.0 ± 0.7 vs 6.5 ± 0.3; ns for women only; percentage of subjects with $>10 \%$ risk significantly higher in total HIV+LD+ populations and men only; risk not higher than controls for HIV+LD-; When also matched for W/H, no difference in 10yr risk between HIV+LD+ and controls (7.6 ± 0.6 vs 7.6 ± 0.4) Risk significantly higher in patients with lipoatrophy compared to lipohypertrophy, or \|mixed LD No association with current PI use	CHD risk is increased in patients with fat redistribution Patterns of fat redistribution and sex may be important components of risk determination

Ref\#		Objective	Study Design	Endpoints	Analysis Methodology	Follow up (Calendar Years)	Sample Size Patient Years (PY)	M/F	$\begin{array}{\|c\|} \hline \text { Age }\{\text { \{mean }\} \\ \text { Median } \\ \text { (IQR) } \end{array}$	Ethnicity Race	Key Results $[95 \% \mathrm{Cl}]$	Author's Conclusions
10B	Study A1424008/Grover et al	Estimation of the timpact of nelfinavir jand atazanavir on CVD risk and life expectancy (LE) after ,adjustment for HIV \|related mortality	Used data from a trandomized controlled trial, that compared nelfinavir and tatazanavir effects on CVD, and adjusted for HIV related mortality	CVD risk,	CVD risk estimated through Cardiovascular Life Expectancy Model; validation of the forecasted 'LE based on the 3rd National Health and Nutrition Examination Survey Study land results compared to US Life Tables Assumption of 2.9\% HIV \|related annual mortality rate	32 week		not \|provided	not provided	ot provided	Changes in total and LDL cholesterol (+24\% land $+28 \%$) observed among 91 nelfinavir patients were significantly greater ($\mathrm{p}<0.05$) than those among 178 atazanavir patients (+4\%,+1\%); predicted LE reasonably well ;approximated LE from US life tables CVD risk 10-31\% lower among atazanavir than among nelfinavir patients; among low \|risk patients, treatment with atazanavir tincreased LE from 0.06 to 0.22 years 95% Cl, 0.05 TO 0.29); presence of additional risk factors increased potential advantage of ;atazanavir vs nelfinavir to an increased LE from 0.22 to 1.18 years ($95 \% \mathrm{Cl}, 0.20$ TO 1.53)	EEstimated CVD risk and LE models indicated a lower risk and higher LE for latazanavir compoared to nelfinavir
11	David et al		\|Retrospective; matched ;case control; based on medical records of all patients seen	Documented CVD (angiography, \|echocardiography, exercise stress testing ; or MI)	All patients with events included as cases, sex and jage matched controls (2:1) Impact of specific variables jassessed using conditional logistic regression analysis Variables included in model: nadir CD4, duration of PI texposure, duration of NRTI exposure, smoking, hypertension, hyyperlipidemia, HIV-RNA, family history, race, and recent CD4	(1999-2000)	: 16 cases; 32	$\begin{aligned} & 19 \% \text { F in } \\ & \text { each } \\ & \text { group } \end{aligned}$	$\left\{\begin{array}{l} 43[42-66] \\ \text { and } 45[37- \\ 65] \end{array}\right.$	50% White 50\% Black among ICVD patients 47\% White and 53\%Black in Control	Hypertension, smoking, elevated cholesterol, family history and CD4 count <200 were significant predictors for CVD in univariate models Use of PI or other ART was not a risk factor	\|schemic CVD occurs in HIV+ patients tand is associated with traditional risk factors
12	ACTG 5078/ Currier et al		Prospective, longitudinal; matched cohort Triads (HIV+ PI > 2 yrs; \|HIV+ no PI; HIV negative) were matched for age, race, ;sex, blood pressure, smoking and menopause Baseline, week 24, 48, 72 jand 96 week evaluations planned	Subclinical ;atherosclerosis determined by carotid !IMT	IMT of far wall obtained in duplicate Median IMT differences between groups Cross sectional analysis for \|baseline	Baseline reported there	134 in 45 triads	$\left\{\begin{array}{l} 40 \mathrm{M} \text { and } \\ 4 \mathrm{~F} \text { triads } \end{array}\right.$	not provided	76\% White 3\% Black 16\%Hispanic 4\%API	HIV+ PI group had higher levels of total cholesterol and triglycerides Median IMT in the three groups were 0.693, 0.711 and 0.687 , the median differences between any two groups non significant Independent predictors for increased IMT tcholesterol (total, LDL), triglycerides, age, BMI and current smoking	No clinically relevant differences were idemonstrated at baseline Longitudinal follow-up is ongoing

Ref\#	$\begin{aligned} & \text { Studyl } \\ & \text { Author } \end{aligned}$	Objective	Study Design	Endpoints	Analysis Methodology	Follow up (Calendar Years)	Sample Size Patient Years (PY)	M/F	Age \{mean\}	Ethnicity Race	Key Results $[95 \% \mathrm{CI}]$	Author's Conclusions
13	Hsue et	Identify predictors for carotid IMT in HIV infection Follow IMT Iprogression over 1 year	Prospective, longitudinal study	Mean maximal IMT of 12 preselected \|segments	B-mode ultrasound for carotid IMT; IMT progression measured in 21 patients Multi-variable linear \|regression to identify引predictors	year	106	17\% F	\{ 44 +1/8\}	not provided	Mean baseline IMT was 0.90 +/- 0.27 mm Mutlivariable predictors of baseline IMT increase: age, LDL cholesterol, hypertension, and nadir CD4<200 Mean rate of IMT progression was $0.1=/-0.1$ $\mathrm{mm} / \mathrm{yr}$; age and duration of PI therapy predictors	IMT associated with classic coronary risk factors and nadir CD4 <200 Both traditional and immunodeficiency contribute to atherosclerosis in HIV 10-fold acceleration in progression of IMT tover 1 year follow up, associated with ;age and PI use
14	Seminarietal	Evaluate the extent of IMT in PI treated HIV patients compared to PI-naïve and HIV negative subjects	Multicenter cross-sectional study	!ıMT	Hematological and carotid ;ultrasound			4\% F	\{[33-37\}	not provided	PI-using patients had significantly higher triglyceride, HDL and apo B levels IMT increased in PI-using patients compared to naïve and HIV-negative	IMT more pronounced in Pl using patients
15	Chironi et al	Assess IMT in pretreated $\mathrm{HIV}+$ tpatients prone to patherosclerosis and 2 Igroups of HIV negative controls (without or with :metabolic profiles	Matched case control study	[IMT	IMT measurement in plaque free far wall segment of right CCA, calculated as average of 100 measurements General linear model for jadjusted comparison		36/group	17\% F	[44-45\}	not provided	IMT greater in cases than control group 1 ('without similar metabolic profile); significant ;after adjustment for age, sex, BMI, waist, SBP, smoking and prior CVD; not significant after adjustment for glucose, triglyceride, total:HDL cholesterol ratio IMT not different between cases and control group 2 (similar metabolic profile) Multivariate analysis: IMT associated with age (case and control 1), waist (case only) and total HDL (case only)	Study was not designed to detect association of IMT with duration of infection or type/duration of antiretroviral treatment Lipid disturbances may be involved in the early atherosclerotic process in HIV+ patients
16	Mercie et al		Cross sectional analysis within a multicenter, prospective cohort	IMT	B-mode ultrasonography Variables: lipodystrophy, jage, gender, BMI, smoking, talcohol, SBP, HIV risk group, AIDS stage, type and Iduration of HAART, CD4, HIV-RNA, glucose, insulin, total cholesterol and homocysteine		424		$?$		Mean IMT was $0.54 \mathrm{~mm}(0.5-0.6)$. IMT significantly higher in older age, male sex, higher BMI, higher $\mathrm{W}: \mathrm{H}$ ratio, increased SBP, total cholesterol, glucose disorders and homocysteine, regular smoking, alcohol consumption, lipodystrophy and HAART HAART and lipodystrophy lost significance in multivariate model	Only conventional risk factors are tindpendently associated with increased \|IMT in HIV infected patients

Ref\#	Studyl Author	Objective	Study Design	Endpoints	Analysis Methodology	Follow up (Calendar Years)	$\begin{gathered} \text { Sample Size } \\ \text { Patient Years } \\ \text { (PY) } \\ \hline \end{gathered}$	M/F	$\left.\begin{array}{\|c\|}\text { Age }\{\text { mean } \\ \text { Median } \\ \text { (IQR) }\end{array}\right\}$	Ethnicity Race	Key Results [95\% CI]	Author's Conclusions
17	Depairon et al	Determine association between Pl use and prevalence of atherosclerosis	Cross sectional analysis ;within a prospective cohort study	Carotid and femoral \|ImT	B-mode ultrasound imaging ;of carodi and femoral tarteries performed by same (blinded) investigator		$\begin{array}{l:l} 168 \mathrm{HIV}+, 68 \\ \mathrm{HIV}- \end{array}$	\|HIV+: 28.6\% F HIV- 20.5\%F	$\left\{\begin{array}{l}\mathrm{HIV}+: \\ \text { restricted to } \\ \end{array}\right.$ page 30-50	ucasian on	HIV+ patients were younger, had lower BMI, Higher total cholesterol, triglycerides, and total:HDL cholesterol ratio, higher prevalence ;of smokers and higher prevalence of plaques; Presence of plaques associated with male Isex, older age, and higher LDL cholesterol buth not HIV infection nor PI treatment	Atherosclerotic plaques were associated with traditional (modifiable) risk factors
18	Acevedo etal	Estimate the coronary \|atherosclerotic burden in HAART treated HIV+ patients (severe dyslipidemic, or not) compared to HIVcontrols	Matched pilot study, cross sectional including HIV+ and HIV- patients HIV+ pts on HAART min 6 M	CT derived calcium scores	Coronary artery imaging using multi-detector scanner and Imatron electron beam tomography scanner. Coronary calcium quantified using Agatston method HIV+ patients were those Ireferred to a preventive cardiology unit or from same referring clinic; 1:4 matched		17 referred, 63 non referred fand 68 matched HIVcontrols	$\begin{aligned} & \text { not } \\ & \text { provided } \end{aligned}$	42 [37-49]	ot provided	Framingham $10 y$ r risk score nearly 10% in referred group; 75% had detectable coronory calcium, with mean scores of $2.93 \pm 2.3 \mathrm{vs}$. 1.97 ± 2.45 in matched controls	High prevalence of detectable coronary calcium and traditional risk factors in severely dyslipidemic HIV+ patients
19	Nutrition for Healthy Living Wanke et al		Substudy of the Nutrition for Healthy Living Cohort Study Cross sectional analysis 66\% of patients were on HAART	$\begin{aligned} & \text { CT derived coronary } \\ & \text { calcification scores } \\ & \text { CCS) } \end{aligned}$	Comparison of iiidid profiles by HAART, Pl use, for men a women; comparison of CCS >100 to <100	(post 1995)		3.5\% F		38\%Minority	Men on HAART had higher TG, TC, Apo A1, Apo B, Apo E, RLPC and BMI; women on HAART higher TC, HDL, LDL and lower BMI Men on PI had higher TC, Apo E, RLPC and lower glucose; women on PI had higher homocysteine, glucose and insulin >100 CCS group (222.7) were older, had thigher SBP and higher W/H	Correlates of coronary calcification in HIV infected adults are not distinct to HIV nor necessarily related to HIV therapy Impact of abnormal lipids associated with HAAART on CHD remains to be defined
20	Meng etal		Black patients from MD enrolled into a longitudinal study of atherosclerosis and ;cocaine use; 73% recruited from ALIVE cohort Cross sectional analysis	Coronary artery calcification (CAC)	CAC determined by scanning, average 12 scans /patient; score by Agatston method	(2000-2001)	$\text { 98(55 PI, } 43$	$\begin{aligned} & 27 \% \mathrm{~F} \\ & \text { and } 33 \% \\ & \mathrm{~F} \end{aligned}$	$\{\{39.3\} \text { and }$	100\% Black	PI group had significantly higher cholesterol, LDL cholesterol, MCV, CAC scores 11.0 ± 28.6 in PI and 1.7 ± 5.8 in tnon PI, $\mathrm{p}=0.043$; CAC scores associated with duration of PI Rx,	Use of PI associated with coronary artery icalcification, atherogenic lipid changes tand increased MCV

Ref\#	Study/ Autho	Objective	Study Design	Endpoints	Analysis Methodology	Follow up (Calendar Years)	Sample Size Patient Years (PY)	M/F	$\left\{\begin{array}{c} \text { Age }\{\text { \{mean }\} \\ \text { Median } \\ (\text { QRe) } \end{array}\right.$	Ethnicity Race	Key Results [95\% CI]	Author's Conclusions	
21	ACTG 5056s/ Henry et al	Assess CRP levels tand association with CAD risk and HIV surrogate marker status in patients who tachieved virologic ,suppression	Cross sectional analysis of a \|random sample of 99 ACTG372A patients on an indinavir containing regimen	CRP	$\begin{array}{\|l} \text { CRP measured using } \\ \text { ultrasensitive } \\ \text { immunonephelometric assay } \end{array}$			913\% F		\% Cauc	Median CRP was $2.29 \mathrm{mg} / \mathrm{L}$; a significant tproportion of patients had high CRP risk \|levels, and higher risk associated with increased age, WBC, fibrinogen, TG, insulin, HOMA, Framingham heart scores, and lower HDL-C CRP levels not associated with baseline HIV1 RNA or CD4 cell counts	In virologically suppressed patients, elevated CRP levels were observed and clustered with some features of metabolic syndrome and CAD All patients received indinavir, thus data may not be generalizable	
21A	Sklar et al	Analysis of the effectiveness of CRP ןas a biomarker for determining CV risk in HIV patients	Prospective, longitudnal cohorts of HIV^{+}patients on ART Cohort I: on I yr of continuous ART; cohort II \&, 'III: on structured intermittent therapy (SIT) with trandomized and continuous llong cycle interruptions; cohort IV: on short cycle SIT	RP	CRP measured using high Isensitivity assay (0.1 img/L;Immulite) on plasma from 4 cohorts of HIV^{+} patients	1 year	$\left\lvert\, \begin{gathered}\text { cohort I: } 17, \\ \text { cohort II: } 18,\end{gathered}\right.$ cohort III: 24 cohort IV: 8	$\begin{aligned} & \text { not } \\ & \text { provided } \end{aligned}$	not provided	ot provided	No significant change (median $0.1 \mathrm{mg} / \mathrm{L}$, $\mathrm{p}=0.85$) in CRP levels after 1 yr of cont. ART no significant change in CRP levels after 1 yr of long (med $-0.1, \mathrm{p}=0.33$), or short cycle (med $-0.1, \mathrm{p}=0.07$) SIT. Median CRP for all patients at the time of ;optimum viral suppression was $1.8 \mathrm{mg} / \mathrm{L} .18 \%$ classified as low, 21% mild, 28% moderate, 16% high and 16% highest risk on quantiles lestablished for healthy individuals CRP values inversely correlated with HDL-C ($\mathrm{p}=0.03$) and directly associated with TC ($\mathrm{p}=0.04$). CRP values approached significant for age ($p=0.08$) but not other traditional risk factors.	Reduction of viral replication or reduced exposure to ART do not influence CRP levels Variability in CRP values among individuals with well controlled HIV disease could be due to associations between CRP and traditional CV risk factors CRP may be an important biomarker for determining CV risk in HIV patients	
22	Dube etal	Assess effect of indinavir monotherpay on endothelial function in HIV negative men	Examination of 6 HIV negative men before and lafter administering 800 mg tid of indinavir	g Blood Flow (LBF)	Leg blood flow measures in tbasal conditions and during intra-arterial infusion of \|vasoactive compounds (methacholine and	nitroprusside)	4 weeks	6	0\% F	$\{41 \mathrm{yrs}\}$	t provided	Increase in LBF during femoral artery infusion jof maximal doses of methacholine was markedly impaired between baseline and 4 weeks of IDV treatment (227 ± 45 to 82 ± 18).; response to nitroprusside did not change; the expected effect of NO antagonist -LNMMA was abolished by indinavir; HOMA-IR increased significantly (1.15 ± 0.23 to $1.52 \pm$ 10.34) Steady state insulin concentrations during hyperglycemia increased during treatment (43.3 ± 9.3 to $54.4 \pm \mathrm{muU} / \mathrm{ml}$); mean blood tpressure, cholesterol, and triglycerides did not	IDV induces endothelial dysfunction when administered as monotherapy to healthy HIV negative subjects
23	Stein et al	Analyse the \|lipid/lipoprotein ;abnormalities tassociated with use of !PI in HIV patients	Crossectional study with \|HIV+ patients divided in 2 groups : using Pl and not using PI	id/lipoprotein levels	Enzymatic analysis and Unuclear magnetic resonance spectroscopic analysis		$\begin{array}{\|l\|l} 37(22 ~ P I, ~ \\ \hline \text { non-PI) } \\ \hline \end{array}$	22\% F	\{42.2-49.8\}	t provided	PI-using patients had significantly higher total pholesterol and triglyceride levels	Metabolic changes associated with PI are tatherogenic and cause endothelial dysfunction !	

Reff	Study/ Author	objective	Study Design	Endpoints	Analysis Methodology	Follow up (Calendar Years)	Sample Size Patient Years Patient Year (PY	MF	$\begin{gathered} \text { Age \{mean\} } \\ \text { Median } \end{gathered}$	Ethnicity Race	Key Results [95\% CI]	Author's Conclusions
				$\begin{aligned} & \text { Flow mediated } \\ & \text { vasodilation (FMD) of } \\ & \text { brachial artery (BA) } \end{aligned}$	High resolution ultrasund						IPI-using patients had markedly impaired FMD compared to non-PI patients $(2.6+4.6 \%$ vs $8.1 \pm 6.7 \%$); use of PI was the primary function; in addition, chylomicron, VLDL, IDL and HDL-C levels predicted FMD	Patients receiving PI should be screened for hyperlipidemia

