Abstracts

PEC307
HIV recent infection test-based incidence as a counter-factual for new PrEP trials

N. Parkin1, F. Gao2, E. Grebe3, A. Cutrell4, M. Das5, D. Donnell6, D. Gidden7, J.P. Hughes8, C. Mullick9, J. Murray8, M. Robertson9, T. Tchekede2, V. Miller10, for the Forum for Collaborative Research Recency Assay Working Group

Data First Consulting, Inc. Sebastopol, United States, 2Fried Hutchinson Cancer Research Center, Seattle, United States, 3Vitalant Research Institute, San Francisco, United States, 4University of California San Francisco, San Francisco, United States, 5HIV Healthcare, Research Triangle Park, United States, 6Gilead Sciences, Foster City, United States, 7University of Washington, Seattle, United States, 8US Food and Drug Administration, Silver Spring, United States, 9Merch & Co., Inc., Kentlworth, United States, 10Forum for Collaborative Research, Washington, United States

Background: Clinical trials of new PrEP agents are challenging because it is not ethical to include a placebo-only group. Innovative ways to evaluate new PrEP modalities are needed without impractically large sample sizes (SS) required for non-inferiority trials. HIV recent infection testing algorithms (RITAs) such as the limiting antigen avidity assay (LAg) plus viral load (VL) could be used to derive a “counter-factual” incidence estimate (CFIE) using specimens from untreated, HIV-positive people identified during screening, to which on-PrEP incidence can be compared. The feasibility of this approach is partly dependent on the SS needed to ensure adequate power, which is impacted by RITA performance, the number of recent infections identified, the expected efficacy of the intervention, and other factors.

Methods: SS (number of persons screened) required to support detection of an 80% reduction in incidence (null hypothesis: 50% reduction) were calculated based on a test statistic of log incidence ratio (https://www.ias2021.org). Power was calculated for non-inferiority trials, at least in high incidence populations for which number of participants in recent phase 3 PrEP trials were 2882, 5463, and 2327, respectively. These SS are comparable to the SS derived from pooled calibration data.

Results: Required SS for three key populations were modeled: women aged 14-17 years or >18 years in South Africa (subtype C), and men who have sex with men in the USA (subtype B). SS for these three populations were 2882, 5463, and 2327, respectively. These SS are comparable to the number of participants in recent phase 3 PrEP trials.

Conclusions: CFIEs based on recent infection testing can facilitate next-generation PrEP trials, at least in high incidence populations for which RITAs have been calibrated, and where the efficacy of the intervention is expected to be very high. SS may not be feasible in populations with lower incidence, where the FRR is higher (e.g. subtype D), or if PrEP efficacy is expected to be lower. Despite these limitations, generation of a CFIE based on recency assays appears to be feasible, offers high statistical power, and is nearly contemporaneous with the on-PrEP population.

Microbicides (including vaginal and rectal microbicides)

PEC308
Castanea Sativa Mill. bark extract (ENC®) inhibits R5 and X4 HIV-1 strains infectivity in vitro

M. Tamburelli1, V. D’Urbano1, M. Micucci1, R. Budriesi1, A. Bertoldi1, A. Primavera1, M. Carbone1, M.C. Re1, I. Bon2

1Microbiology Section, Department of Experimental, Diagnostic and Speciality Medicine, School of Medicine, Fondazione IRCCS Ospedale Sant’Orsola, Bologna, Italy, 2Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy

Background: The development of alternative strategies in Pre-Exposure Prophylaxis (PrEP), such as topical microbicides, might be crucial to prevent or reduce HIV transmission at level of genital and rectal mucosa. We analysed the antiviral activity of the partially purified Castanea Sativa Mill. bark extract (ENC®), a natural molecules consisted of over 78% hydrolysable tannins, in cell cultures infected with different HIV-1 strains.

Methods: Attachment, pre-attachment and post-attachment assays were performed to investigate ENC® related antiviral mechanisms in vitro, using HIV-1 strains with different tropism.

Results: In the first set of experiments, the antiviral activity of ENC® on HIV-1 replication was evaluated. In the attachment assay, ENC® (20, 10, 5 µg/ml HIV-1 gag p24), were pre-incubated with scalar concentrations (20, 10, 5 µg/ml) of ENC®, then added to activated PBMCs. ENC® antiviral effect was determined measuring HIV-1 gag p24 in cell supernatant at day 7 post-infection (pi) using an ELISA kit (Biomerieux) and was compared with untreated control. In addition, in a dilution assay, the compound was pre-incubated with viral strains and diluted 50-fold to reduce ENC® concentration below the level capable of preventing HIV infection. Moreover, ENC® cytotoxicity was evaluated by analysis of the lactate dehydrogenase (LDH) levels.

Conclusions: ENC® shows a significant antiviral activity against all HIV-1 strains tested, it is safe and free of side effects in vitro. Accordingly, could be an attractive candidate microbicide against HIV-1 infection and may be interesting to examine its antiviral mechanism using a human cervicovaginal histocultures model.