Reflections on use of counterfactual placebo in HIV prevention trial design

Deborah Donnell

Fred Hutchinson Cancer Center University of Washington

IAS Symposium 2022

FRED HUTCH CURES START HERE[™]

Why consider counterfactual designs?

Why do we have to consider counterfactuals?

Parallels/bridge between NI designs and counterfactual placebo

Statistical frameworks to retain scientific rigor

Measurement of counterfactual placebo

HIV incidence in recent trials of HIV prevention

	CTIVE CONTROL Countries N enrolled Number of infections	Number of	Incidence rate/100 PY		
ACTIVE CONTROL		N enrolled	infections	Experimental	Active ctrl (FTC/TDF)
DISCOVER (MSM)	Europe, UK, Canada and Untied States	5399	7 vs 16	0.16	0.34
HPTN 083 (MSM/TGW)	United States, Peru, Brazil, Argentina, Thailand, Vietnam, South Africa	4541	13 vs 39 (stoppedearly)	0.41	1.22
HPTN 084 (Women)	South Africa, Botswana, Eswatini, Zimbabwe, Malawi, Kenya, Uganda.	3224	4 vs 36 (stopped early)	0.20	1.86
PLACEBO CONTROL (FTC/TDF background use)			Experimental	Placebo	
AMP MSM/TG (HVTN 704/HPTN 085)	United States, Peru, Brazil, Switzerland	2699 (3 arm)	28 & 32 vs 38	2.35	2.98
AMP Women (HVTN 703/HPTN 081)	South Africa, Zimbabwe, Malawi, Botswana, Kenya, Mozambique, Tanzania	1924 (3 arm)	19 & 28 vs 29	2.49	3.10
HVTN 702 (Men and Women)	South Africa	5404	138 vs 133	3.37	3.28

Sample size for fully powered non-inferiority trials

Decreasing number of infection events = Larger trials Example: HPTN 083: Show CAB-LA is non-inferior to FTC/TDF in MSM+TG assuming CAB-LA is 25% better than FTC/TDF

Person Years

- High risk to conduct a classical RCT if incidence rates are below 1/100 person years
 - Expect low rates when participants have access to highly effective (long acting) prevention
 - May not gather enough evidence (HIV infections) to prove effectiveness
 - Very large sample sizes will cost very large \$\$
 - Large enrollments require expanding enrollment to lower risk populations

What other approach can we use?

• Estimate what the infection rate "would have been

if (counter-to-fact) there had been a placebo" "Counterfactual placebo"

Placebo: a substance with no therapeutic effect, made identical in appearance to experimental biologic, used as a control in testing new drugs.

Goal: Estimate the effect of an experimental biologic relative to a placebo, if, counter to fact, the trial had a randomized placebo arm Characteristics of gold-standard placebo-controlled RCT design: Within each group/arm:

- Expected balance wrt to measured and unmeasured confounders
- Same follow-up time distribution in each site
- Same background exposure risk

Bridge between noninferiority and counterfactual designs

Superiority to Non-inferiority trial

Calendar time

The non-inferiority trial design as the gold standard

- 1. Randomized internal validity of Experimental versus established Standard (as active control)
- 2. Non-inferiority margin used to define success criterion for effectiveness *The NI margin is based on prior placebo-controlled RCT results from an external trial*
 - No efficacy estimate relative to Placebo, only to Standard

Accepted principles for this comparison

- A. **Constancy**: NI Margin should ... account for bias or lack of reliability in the estimate of the effect of Standard
- **B.** Effect preservation: NI Margin should ... achieve preservation of a percentage of the effect of Standard (e.g. 50%)

Implementation of these principles for NI

A. **Constancy**: Prevention effect of standard (A) compared to placebo (P) is constant in prior and future trials:

$$\log(\lambda_P) - \log(\lambda_A) = \log(\lambda_{P^0}) - \log(\lambda_{A^0}) \quad \left[\text{Equiv.} \frac{\lambda_P}{\lambda_A} = \frac{\lambda_{P^0}}{\lambda_{A^0}}\right]$$

- The NI trial is not done under the same conditions as the prior trial
- The effect in the prior trial is subject to measurement uncertainty **Implement:** Use conservative estimate of (relative) effect from placebo-controlled trial(s): $\log \hat{\lambda}_{P^0} - \log \hat{\lambda}_{A^0} < z_{\alpha} \sigma_{PA^0}$
- B. Success Criterion: NI Margin should ... achieve preservation of a percentage of the effect of Standard (e.g. 50%)
- The experimental arm (E) must be "not unacceptably worse" than Standard:
- 95-95 formulation of the NI-margin (δ) with preservation of effect (γ) defines NI margin

$$\delta = (1 - \gamma) \left(\log \widehat{\lambda}_{P^0} - \log \widehat{\lambda}_{A^0} + z_\alpha \sigma_{PA^0} \right)$$

Constancy assumption and preservation of effect motivates a formulation of a counterfactual hypothesis based on measurement of placebo, active and experimental:

$$K_{0}: \frac{\log(\lambda_{P}) - \log(\lambda_{E})}{\log(\lambda_{P}) - \log(\lambda_{A})} \leq \gamma \text{ vs. } K_{a}: \frac{\log(\lambda_{P}) - \log(\lambda_{E})}{\log(\lambda_{P}) - \log(\lambda_{A})} > \gamma$$

 λ_P , λ_A , λ_E HIV rates in future placebo, active control and experimental λ_{P^0} , λ_{A^0} HIV rates from previous placebo-controlled trial

Assumed Future Trial Experimental Context

- Randomized trial with experimental and active-control arm(s)
 - Internal validity of direct causal comparison λ_A , λ_E
- "Counterfactual placebo" measured in context of prior/current RCT
 - High quality ascertainment of incidence or effect λ_P
 - High quality measurement of cohort characteristics (needed b/c not-randomized)
- Trial goal to reliably establish sufficient evidence from:
 - Active control group satisfies constancy:

 $\log(\lambda_P) - \log(\lambda_A)$

• Experimental and active-control groups have "similar" infection rates:

 $\log(\lambda_E) - \log(\lambda_A)$

• Experimental (and active-control) groups have lower infection rates than "placebo

 $\log(\lambda_P) - \log(\lambda_E)$

Calendar time

Approaches to estimating efficacy relative to "Counterfactual" placebo

Approaches under investigation

- 1. Bridging from contemporary "placebo" data
 - Registrational Cohort/Post trial access data same participants
 - Placebo data from external trials different participants
- 2. Cross-sectional incidence assessed during screening for enrollment in "untreated" participants
- 3. Bridging active control efficacy using adherence-efficacy relationship of active control
- 4. Assessing placebo risk using reliable predictors of HIV exposure risk

Counterfactual efficacy using external trials

Counterfactual study	CAB-LA Incidence	Counterfactual Placebo Incidence	Efficacy of CAB- LA versus Placebo (95% CI)
Five Country (AMP Women)	0.19	2.62	93% (76%-98%)
Three Country (ECHO)	0.23	4.47	95% (79%-99%)
South Africa (HVTN 702 Vaccine)	0.28	4.21	93% (73%-98%)

Summary

- Trials of novel ARVs are proceeding with counterfactual placebo assessments planned
 - All include randomization to an active-control Standard
 - Comparison of both Standard and Experimental with CF Placebo are available; non-randomized assessment with CF placebo appears primary
- Statistical frameworks to better understand assumptions and study performance are under development
- It is not clear (to me) if standards to "establish effectiveness" amongst placebo, active and experimental "arms" have yet been defined.
- Data from completed trials are available for testing different potential approaches to bridging
- Attention to appropriately protect against uncertainty of constancy-type assumptions and understand veracity of effectiveness are needed

THANK YOU

Fei Gao David Glidden Holly Janes Brett Hanscom Tom Fleming FRED HUTCH Beatriz Grijnsten Raphy Landovitz Veronica Miller Mike Cohen Wafaa El Sadr

CURES START HERE™

fredhutch.org