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Adap%ve	Clinical	Trial	Designs	
	FDA	is	Interested:	

	
		

	
		
		

“A	large	effort	has	been	under	way	at	FDA	
during	the	past	several	years	to	encourage	the	
development	and	use	of	new	trial	designs,	
including	enrichment	designs.”	



Adap%ve	Clinical	Trial	Designs	
Pharmaceu%cal	Companies	are	Interested:		
	
	
	
	
	
“An	adap%ve	clinical	trial	conducted	by	Merck	
saved	the	company	$70.8	million	compared	with	
what	a	hypothe%cal	tradi%onally	designed	study	
would	have	cost…”	

	



Why	Consider	Adap%ve	Designs?	

Poten%al	Benefits:	
– Can	give	More	Power	to	Confirm	Effec%ve	
Treatments/Interven%ons	and	Determine	
Subpopula%ons	who	Benefit	Most	

– Can	Reduce	Cost,	Dura%on,	and	Number	of	
Par%cipants	

– Cau%on!	adap%ve	design	not	always	beVer	
Challenge:	find	the	best	design	tailored	to	
clinical	inves%gator’s	research	ques%on	and	
resource	constraints	
	



Adap%ve	Designs	
•  Par%cipants	Enrolled	over	Time	
•  At	Interim	Analyses,	Can	Change	Sampling	in	
Response	to	Accrued	Data:	
– Adap%ve	designs	could	involve	changes	to:	

•  Sample	size	
•  Enrollment	criteria	(“enrichment”—my	focus)	
•  Length	of	follow-up		
•  Randomiza%on	probabili%es		
•  Dose	

•  SMART	designs:	If	par%cipant	fails	on	ini%al	
treatment,	randomized	to	another.	



Stroke Trial Application
New Surgical Technique to Treat Intracerebral 

Hemorrhage (MISTIE, PI: Daniel Hanley) 
Subpopulations: intraventricular 
hemorrhage (IVH) < 10ml vs. not. 
Projected proportions: 0.33, 0.67.   
Primary outcome: 180 day modified Rankin 
Scale < 4. 

Clinically meaningful, minimum treatment 
effect: 12% risk difference. 

Data set used: MISTIE phase 2 trial data.



Alzheimer’s Disease 
Application

Treatment to reduce progression from mild 
cognitive impairment to Alzheimer’s 
disease. 
Subpopulations: APOE4 carrier or not. 
Primary outcome: 2 year change score in 
Clinical Dementia Rating Sum of Boxes 

Clinically meaningful, minimum treatment 
effect: 30% reduction in mean change score 

Data set used: Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) cohort study



General Problem
Two predefined subpopulations that partition overall pop. 

Δ1 = Mean treatment effect for subpopulation 1 

Δ2 = Mean treatment effect for subpopulation 2 
Δ0 = Mean treatment effect for combined population 
Goal: construct adaptive enrichment design to test  

that strongly controls familywise Type I error rate, 

provides power guarantees, and optimizes expected sample  

size and/or duration. 

H01 : �1  0; H02 : �2  0; H00 : �0  0



Example of Power and 
 Type I Error Constraints

Power and Type I Error Constraints: 
1. If clinically meaningful, minimum effect  
  in both subpopulations, 80% power to reject 
     combined pop. null H00. 
2. If clinically meaningful, minimum effect in 

single subpop., 80% power to reject that null 
hyp. 

3. Strong control of familywise Type I error rate 
0.025 (one-sided). 

Goal: minimize expected sample size, averaged 
over scenarios in (1), (2), and global null.



Standard (non-adaptive) Design 1 

 
Subpopulation 1 
Subpopulation 2 

Subpopulation 1 

Standard (non-adaptive) Design 2 
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Subpopulation 1 

Stage 1             Decision          Stage 2 

Subpopulation 2 
Subpopulation 1 

2 Stage Adaptive Enrichment Design 
Flow of Enrollment and Decision 

Enroll Both 
Subpopulations 

Enroll Only Subpop.1 

Enroll Both Pop. 
Subpopulation 1 
Subpopulation 2 

Option 1 

Option 2 

Subpopulation 2 
Enroll Only Subpop.2 

Option 3 

Option 4  Trial 



Adaptive Enrichment Design: Group 
Sequential, Enrollment Modification Rule

• At each analysis k, compute cumulative statistics 
(e.g., z-statistics) Z0,k, Z1,k, Z2,k for combined pop., 
subpop. 1, and subpop. 2, respectively. 

• Decision rule based on these statistics to:          
stop entire trial, stop single subpopulation accrual 
but continue other, continue both. (Cannot restart 
accrual once stopped.) 

• No other adaptive features (e.g., randomization 
ratio fixed)



Multiple Testing Procedure
H01 : �1  0; H02 : �2  0; H00 : �0  0

At each analysis k: 
1. (Test efficacy) For each population s∈{0,1,2}, 
     if Zs,k > us,k, reject H0s. 

Also, if both H01 and H02 are rejected, reject H00. 

2. (Modify Enrollment) Stop enrollment of  
   subpopulation s∈{1,2}, if any of following occur:  

    H0s was rejected, Zs,k < ls,k, or Z0,k < l0,k. 

Boundaries us,k, ls,k  set by error-spending functions  
    (Maurer and Bretz, 2013; Rosenblum et al. 2016a,b).



Trial Design Optimization 
Problem

• Many design parameters to set: number of stages, 
per-stage sample sizes, efficacy and futility 
boundaries for each (stage, population) pair 

• We developed software tool to automatically optimize 
over design parameters; goal is to minimize expected 
sample size under power and Type I error constraints.  

-Algorithm: Simulated Annealing. 

-User-friendly graphical user-interface. 

-Outputs reports comparing optimal designs





Design Optimizer Outputs
1. Optimized adaptive and standard 
designs that satisfy all power and Type I 
error constraints 

2. Performance comparisons in terms of: 
sample size, duration, power, Type I 
error.  

3. Highlight key tradeoffs. 

4. Plots of efficacy and futility boundaries



Example of Optimization: 
Stroke Trial Application

Search over 4 classes designs: 

1. Separate error spending functions for efficacy and 
futility boundaries using power family, unequal per-
stage sample sizes, up to 10 stages  

2. O’Brien-Fleming boundaries, 5 stages, equal per-
stage sample sizes 

3. Pocock boundaries, 5 stages, equal per-stage 
sample sizes 

4. Single stage designs



Comparison of Optimized 
Designs: Stroke Trial Application

x=Expected Sample Size
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Performance Tradeoff Summary among Best Designs 

Comparison of Optimized 
Designs: Stroke Trial Application

Optimized 
Adaptive 

Enrichment 
Design

Optimized  
1-Stage

Expected Sample 
Size 968 1430

Maximum Sample 
Size 1787 1430



Optimized Adaptive Design 
Boundaries: Stroke Trial Application

Boundaries 
(z-scale)

Cumulative Sample Size
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Alzheimer’s Disease 
Application

Treatment to reduce progression from mild 
cognitive impairment to Alzheimer’s 
disease. 
Subpopulations: APOE4 carrier or not. 
Primary outcome: 2 year change score in 
Clinical Dementia Rating Sum of Boxes 

Clinically meaningful, minimum treatment 
effect: 30% reduction in mean change score 

Data set used: Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) cohort study



Comparison of Optimized 
Designs

x=Expected Duration (years)
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Optimized 
Adaptive 

Enrichment 
Design

Optimized  
1-Stage

Expected 
Duration (Years) 4.65 5.02

Maximum 
Duration (Years) 5.75 5.02

Performance Tradeoff 
Summary among Best Designs 
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Adaptive Enrichment Designs

Involve preplanned rules for modifying enrollment criteria
based on accrued data

Multiple populations of interest, each with corresponding null
hypothesis to test

Challenge: construct group sequential multiple testing
procedure with all of the following properties:

1 Strong control of familywise Type I error rate (probability of
rejecting one or more true null hypotheses)

2 Leverages correlation among statistics over time and for
overlapping populations

3 Provides strictly greater power than several known methods
4 Does not require knowing covariance matrix in advance
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Related Work

Methods that leverage covariance among statistics: Tang and
Geller (1999), Stallard (2011), Magirr and others (2012),
Magnusson and Turnbull (2013)

Methods that lower rejection thresholds for the remaining null
hypotheses after others have been rejected, by reallocating
alpha across hypotheses (populations): Holm (1979), Bretz
et al. (2009), Maurer and Bretz (2013).
These don’t leverage covariance among statistics.

We combine features from these two types of approaches.

Note: Bretz et al. (2011, Section 3.2) do this, but unlike our
method require covariance of future statistics known in advance.

Michael Rosenblum, Johns Hopkins University Multiple testing procedures for adaptive enrichment designs



Interleaved Error Spending Functions

Error spending function approach of Slud and Wei (1982) and
Lan and DeMets (1983). Advantage: information accrual
rates don’t need to be known in advance.

We use separate error-spending function for each composite
population of interest.

Tests for different populations are interleaved to take
advantage of correlations among statistics for different but
overlapping populations and statistics for the same population
at different times.

Michael Rosenblum, Johns Hopkins University Multiple testing procedures for adaptive enrichment designs



Hypotheses and Statistics

Null Hypotheses: H0j : ∆j ≤ 0, for each j ∈ {0, . . . , J}.
Global null hypothesis H0 : ∆j = 0 for all j ≤ J.

A sequence of analyses 1, . . . ,K are preplanned, where
analysis k takes place at the end of stage k .

At analysis k , observe cumulative, Wald statistics
Z0,k ,Z1,k , . . . ,ZJ,k .

Assume EZj ,k ≤ 0 under H0j for all stages k .

Covariance matrix of Zj ,k fixed but unknown.

Alpha increments αj ,k determined by error spending functions
at each stage.

Michael Rosenblum, Johns Hopkins University Multiple testing procedures for adaptive enrichment designs



Simple Version Without Interleaved Error Spending
Functions

Alpha increments αj ,k ≥ 0 and
∑

j≥0,k≥0 αj ,k = 0.05.

At stage k , consider each null hypothesis H0j , j = 0, 1, . . . , J and
reject H0j if Zj ,k > uj,k.

Each efficacy boundary uj,k is set to be solution to:

αj ,k = PH0

{
Zj ,k > uj,k;Zj ,k ′ ≤ uj ,k ′ for all k ′ ≤ k

}
.

This uses covariances for same population across stages, but
ignores covariance among populations.
Can improve by interleaving error-spending functions.
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Interleaved error spending functions

Alpha increments αj ,k ≥ 0 and
∑

j≥0,k≥0 αj ,k = 0.05.

At stage k , consider each null hypothesis H0j , j = 0, 1, . . . , J and
reject H0j if Zj ,k > uj,k.

Each efficacy boundary uj,k is set to be solution to:

αj ,k = PH0

{
Zj ,k > uj,k;Zj ′,k ′ ≤ uj ′,k ′ for all (j ′, k ′) preceding (j , k)

}
,

where (j ′, k ′) preceding (j , k) if k ′ < k or if (k ′ = k and j ′ ≤ j);
and where αj ,k ≥ 0 and

∑
j≥0,k≥0 αj ,k = α (e.g., 0.05).

This leverages covariances, but does not use alpha reallocation.
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Example of Efficacy Boundary Improvements

Efficacy Boundaries (z-scale) for 3 Stage, 2 Hypothesis Trial

Analysis (k) 1 2 3

Without Interleaving (MMB)
H00 boundaries u0,k 2.57 2.32 2.10
H01 boundaries u1,k 3.45 3.29 3.14

With Interleaving (MNEW )
H00 boundaries u0,k 2.57 2.32 2.09
H01 boundaries u1,k 3.16 2.95 2.74

MNEW : Our new multiple testing procedure.
MMB : Maurer and Bretz (2013) procedure.

Michael Rosenblum, Johns Hopkins University Multiple testing procedures for adaptive enrichment designs



Interleaved error spending functions with alpha reallocation

Closure principle: For each F ⊆ {0, . . . , J}, define local test of
intersection null hyp. HF = ∩j∈FH0j with level α. Reject
elementary null H0j if every HF with j ∈ F rejects.

Local test of HF : reject if Zj ,k > uFj,k for any j ∈ F , k ≥ 0, where

at analysis k , for each j ∈ F , set uFj,k to be solution to:

cFj αj ,k = PH0

{
Zj ,k > uFj,k;

Zj ′,k ′ ≤ uFj ′,k ′ for all (j ′, k ′) preceding (j , k) and j ′ ∈ F
}
,

where cFj ≥ 1 and
∑

j∈F ,k≥0 c
F
j αj ,k = α.

Intuitively, cFj is alpha inflation factor, reallocating alpha from
hypotheses j /∈ F . It can be set, e.g., using graphical approach of
Bretz et al. (2009), but not restricted to this.
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Example of Efficacy Boundary Improvements

Efficacy Boundaries (z-scale) for 3 Stage, 2 Hypothesis Trial

Analysis (k) 1 2 3

Without Interleaving (MMB)
H00 boundaries u0,k 2.57 2.32 2.10
H01 boundaries u1,k 3.45 3.29 3.14

With Interleaving (MNEW )
H00 boundaries u0,k 2.57 2.32 2.09
H01 boundaries u1,k 3.16 2.95 2.74

After Alpha Reallocation (both)
H00 boundaries after reject H01 2.55 2.30 2.07
H01 boundaries after reject H00 2.55 2.30 2.07

MNEW : Our new multiple testing procedure.
MMB : Maurer and Bretz (2013) procedure.
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Main Result

Our new multiple testing procedure: MNEW .
Maurer and Bretz (2013) procedure: MMB .

Theorem

For each null hypothesis H0j ,MNEW rejects it by analysis k
wheneverMMB does.

If H0J is false,MNEW has strictly greater power thanMMB

to reject H0J by analysis k, under the condition that
covariance matrix full rank and each αj ,k > 0.

Michael Rosenblum, Johns Hopkins University Multiple testing procedures for adaptive enrichment designs



Limitations

Computation of multivariate normal distribution function
restricts total number of stages and hypotheses. For
confirmatory trials with 2-4 elementary null hypotheses and
3-5 analysis times, can use Genz et al. (2014).

Advantages from leveraging covariance only useful if
substantial overlap in populations, e.g., a subpopulation that
makes up 2/3 of overall population.

Michael Rosenblum, Johns Hopkins University Multiple testing procedures for adaptive enrichment designs
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