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Multi-Arm Adaptive Enrichment Designs

I Suspected treatment effect heterogeneity: e.g. Molecular
targets in Cancer

I Treatment Effect varies across subgroups in population

I Enroll broadly initially, modify in pre-planned manner based on
accrued data

I Pre-specified Subgroups: defined prior to randomization
I Efficacy/Futility at Interim Analysis: Group Sequential Methods

I Ethical & Efficient: common control; interim stopping
I Potential to reduce time to market, improve patent life
I Not guaranteed to be better than standard design



Optimization of Adaptive Enrichment Designs

I Most prior research on two-arm trials
I Exception: Wason and Jaki (2012)

I 6 parameterized designs, 3 treatment scenarios; Binding futility

I Our Software: Generalized Optimizer for Enrichment Designs
I Two treatments vs. Control
I Familywise Type I Error Rate Control by design; Non-binding

futility stopping
I Compare performance across user-specified treatment scenarios
I Continuous, Binary, and Survival Outcomes

I Application to Cardiac Resynchronization Therapy trials



Design Optimizer Workflow

I User Interface via Web
I Optimization goal, clinically meaningful treatment effect

(MCID), Subpopulation sizes, accrual rate, delay, power type
I Each Scenario: outcome parameters, power constraints, weight

I Design modules translate user input into design parameters
I Designs that strongly control FWER - Step-Down Dunnett:
α-allocation, stages, futility boundaries, interim timing

I Wrapper maps design parameters to performance

I Optimizer searches design space subject to user constraints
I Modular: can optimize any design module + wrapper

I Re-evaluate performance upon convergence
I Reproducible report: design parameters & performance



Example Design Module: Step-Down Dunnett

I At each interim stage in each subpopulation:
I Test non-stopped treatments for efficacy, then futility
I If arm is stopped, patients simply are not enrolled.
I Continue enrollment if at least one treatment remains

I Efficacy boundaries are similar to Spiessens and Debois (2010).
I Futility stopping is non-binding (Liu and Anderson 2008)
I Efficiency: leveraging covariance due to common control



Design Optimization

I Single Parameter Design: Binary Search
I One stage, equal α allocation: Feasible sample size

I Simulated Annealing (SA) - Multiparameter Designs
I 5000-7500 iterations: dimensionality
I 10,000 simulations for design characteristics per iteration

I Starting Value of SA
I 130% of Feasible One-Stage Equal-α Sample Size
I Equal α-allocation
I Futility Boundaries: Z = −4
I Interim Analysis at 50% of Maximum Sample Size

I Distributed across 10 computing nodes; Seeded for replicability



Designs Implemented:

I Single Stage Equal α design: Sample size
I Single Stage Optimal α design:

I 3 Parameters: Sample size, α-allocation (2)

I Two Stage Equal α design
I 5 Parameters: Sample Size, Futility boundaries (4)
I Interim Analysis at 50% Information Time

I Two Stage Optimal α
I 10 Parameters: Sample Size, Futility boundaries (4),
α-allocation (4), interim analysis time



Application | SMART-AV Trial: Cardiac
Resynchronization Therapy



SMART-AV Trial - Rationale (Stein et al. 2010)

I Cardiac Resynchronization Therapy + Defibrillator (CRT-D):
Patients with medically-refractive heart failure (HF) with severe
left ventricular systolic dysfunction (LVESD).

I Timing of atrioventricular (AV) delay may improve disease
progression, survival, hospitalization risk, HF symptoms, quality
of life

I SMART-AV: Multi-center RCT Evaluating:
I Doppler Echo-guided optimization (DEO)
I SmartDelay algorithmic optimization (SDO)
I Fixed Delay - No optimization (Control, Standard of Care)

I Suspect treatment effect heterogeneity based on disease
severity

I Short QRS (≤ 150 ms - healthier, greater chance to benefit) vs.
Long QRS (>150 ms - More severe HF)



SMART-AV Trial - Design: (Stein et al. 2010)

I Objective: Evaluate within-subject 6 month change in LVESV
I Minimum Clinically Important Difference: 15 mL decrease in

Left Ventricular End Systolic Volume (LVESV)
I Power Calculation based on two-sample t-test between

optimized and fixed delay groups: σ = 60 mL: N=759
I Assumed no difference between DEO & SDO
I ‘Internal pilot’ with blinded sample size reassessment at N=75

assess variability in outcome; No interim efficacy analysis.

I Primary Analysis: ANCOVA: change in LVESV adjusted for
baseline LVESV.

I Superiority: SDO vs. Fixed; DEO vs. Fixed;
I If SDO is superior to Fixed, assess non-inferiority of SDO to

DEO;
I If SDO is non-inferior to DEO, assess superiority of SDO to

DEO



Adaptive Enrichment Design

I 2 Treatments (Optimization by Doppler Echo or SmartDelay)
vs. Control (No optimization):

I 2 subpopulations: Short QRS ( ≤ 150 ms) vs. Long QRS
(>150 ms)

I Up to 2 Stages: Interim & Final Analysis
I For each treatment t and subpopulation s,

I δst denotes effect of treatment a in subpopulation s
I Hst : δst ≤ 0 for each s ∈ {1, 2}, t ∈ {A,B} with strong control

of FWER
I Power ≥ 100(1-β)% to reject Hsa when δst ≥ δmin
I Enrollment modification rule: if fst < Zst < est at the end of

stage 1, continue accrual in stage 2 for arm a and control in
subpopulation s; Otherwise stop for efficacy/futility;
Non-binding stopping for futility

I Minimize expected sample size under power constraints and
compare operating characteristics of designs



SMART-AV Trial: (Stein et al. 2010)

I Short QRS: S1 (49%); Long QRS: S2 (51%);
I Primary: 6 Month LVESV Change (mL) - Continuous
I Secondary: NYHA Functional Class Improvement - Binary
I Delay = 6 months; Accrue 20 patients/month
I Fixed sample size vs. Two stage; Equal α allocation

vs. optimized allocation;
I Size = 0.05; Power=0.8 All Non-Null



Simulation Scenarios

Scenario δ1A δ1B δ2A δ2B

1. Neither treatment effective - Global Null 0 0 0 0
2. A effective in s1 δmin 0 0 0
3. A, B effective in s1 δmin δmin 0 0
4. A effective in s1, s2 δmin 0 δmin 0
5. A effective in s1, s2; B effective in s1 δmin δmin δmin 0
6. A, B effective in s1, s2 δmin δmin δmin δmin

I Asymmetric - A or B effective in s2 if effective in s1



Continuous Outcome - LVESV
Means

Scenario Weight C1 C2 A1 A2 B1 B2

1 0.167 0 0 0 0 0 0
2 0.167 0 0 15 0 0 0
3 0.167 0 0 15 15 0 0
4 0.167 0 0 15 0 15 0
5 0.167 0 0 15 15 15 0
6 0.167 0 0 15 15 15 15

SDs

Scenario Weight C1 C2 A1 A2 B1 B2

1 0.167 60 60 60 60 60 60
2 0.167 60 60 60 60 60 60
3 0.167 60 60 60 60 60 60
4 0.167 60 60 60 60 60 60
5 0.167 60 60 60 60 60 60
6 0.167 60 60 60 60 60 60



Results - LVESV: Continuous Outcome

I One Stage Equal α: N=1827
I One Stage Optimal α: N=1782

I α1(1)= 0.55; α2(1)= 0.45;

I Two Stage Equal α:
I ESS=1716.7; MSS=1953
I f1A= -6.8; f1B= -2.13; f2A= 0.95; f2B= 0.07;

I Two Stage Optimal α:
I ESS=1648.6; MSS=1818; Interim: 0.22%
I α1(1)= 0.09; α1(2)= 0.47; α2(1)= 0.05; α2(2)= 0.4;
I e1(1)= 2.85; e1(2)= 2.22; e2(1)= 3.02; e2(2)= 2.29;
I f1A= -3.06; f1B= -5.56; f2A= -0.15; f2B= -0.15;



Results - LVESV: Continuous Outcome
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Results - LVESV: Continuous Outcome
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Binary Outcome - NYHA Class Improvement

Scenario Weight C1 C2 A1 A2 B1 B2

1 0.167 0.7 0.7 0.7 0.7 0.7 0.7
2 0.167 0.7 0.7 0.8 0.7 0.7 0.7
3 0.167 0.7 0.7 0.8 0.8 0.7 0.7
4 0.167 0.7 0.7 0.8 0.7 0.8 0.7
5 0.167 0.7 0.7 0.8 0.8 0.8 0.7
6 0.167 0.7 0.7 0.8 0.8 0.8 0.8



Results - Binary Outcome

I One Stage Equal α: N=2115
I One Stage Optimal α: N=2052

I α1(1)= 0.53; α2(1)= 0.47;

I Two Stage Equal α:
I ESS=2010.7; MSS=2241
I f1A= -6; f1B= -2.86; f2A= 0.5; f2B= -0.62;

I Two Stage Optimal α:
I ESS=1975.4; MSS=2412; Interim: 0.25%
I α1(1)= 0.26; α1(2)= 0.24; α2(1)= 0.26; α2(2)= 0.25;
I e1(1)= 2.47; e1(2)= 2.45; e2(1)= 2.46; e2(2)= 2.43;
I f1A= -1.11; f1B= -7.12; f2A= 0.31; f2B= 0.38;



Results - Binary Outcome
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Results - LVESV: Continuous Outcome
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Future Directions

I Implementing additional designs
I Improved optimization techniques; Optimizing SA
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Optimization via Simulated Annealing

I Optimizer searches for optimal design over large parameter
space: sample size, α-allocation, time of interim analysis,
futility boundaries

I Doesn’t require differentiable objective function
I Y (n) Objective Function at iteration n
I Current parameters X (n) and ‘Temperature’ t(n)

I Generate new candidate design:
X (n+1) ∼ N

(
X (n),

(
t(n)/t(0))2)

I Compare to current design: Accept if
U(0, 1) < e(fracY (n+1)−Y (n)t(n))

I ‘Cool’ system after a fixed number of candidates

I As system ‘cools’ search is more local and conservative
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