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Part I: From causal questions to the 
statistical estimation problem 

Introduction using single time point 
interventions  
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Outline 

• A general roadmap for tackling causal 
questions 

• Introduction to structural causal models 
(SCM)/Causal Graphs 

• Defining target causal quantities using 
counterfactuals 

• Identifying causal effects as parameters of the 
observed data distribution  
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What’s special about causal inference? 

• Data  + statistical assumptions= statistical 
inference 

– Conclusions about an underlying population 

• Data + statistical assumptions + causal 
assumptions (non-testable) = causal inference 

– Conclusions about how the underlying population 
would change if conditions changed 

• Eg- if we changed the way treatment was assigned 
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A Roadmap for Causal Inference  

1. Specify a Question, Causal Model, and its link 
to the Observed Data 

2. Specify the Causal Quantity of Interest 

3. Assess Identifiability 

4. Commit to a Statistical Model and Target 
Parameter of the Observed Data Distribution 

5. Estimate the Chosen Parameter of the 
Observed Data Distribution 

6. Interpret Results 
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Defining the Statistical  
Estimation Problem 

1. Specify a Question, Causal Model, and its link 
to the Observed Data 

2. Specify the Causal Quantity of Interest 

3. Assess Identifiability 

4. Commit to a Statistical Model and Target 
Parameter of the Observed Data Distribution 

5. Estimate the Chosen Parameter of the 
Observed Data Distribution 

6. Interpret Results 
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Example: Abacavir and Cardiovascular 
Disease 

• Analysis of observational data from several 
cohorts suggested abacavir use associated 
with increased risk of myocardial infarction 
among treated HIV-infected population 

– Other analyses found no evidence of such an 
association…. 

• Example of a causal question: Does use of 
abacavir (ABC) increase risk of myocardial 
infarction (MI)? 
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Specifying a Causal Model  

• Causal Model is a way to represent background 
knowledge about the system you want to study 

• Example: 
– What factors affect physicians’ decisions to prescribe 

abacavir? 

– What are major determinants of myocardial infarction 
in this population?  

• Structural Causal Models (SCM) are a formal way 
to represent this knowledge 
– Unify structural equation, causal graph, and 

counterfactual frameworks 
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Structural Causal Models: Motivation 

• Provide a framework in which we can  
1. Rigorously express causal assumptions  

– These are different from statistical assumptions 

2. Define causal questions 
3. Evaluate whether the data and assumptions 

together are sufficient to answer those 
questions  

• Once we have succeeded in defining our 
question as a parameter of the observed data 
distribution (steps 1-4), we are back in the world 
of standard statistics (step 5) 
– Step 5 (estimation) is still a very hard problem 
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Definition: Structural Causal Model  

1. Endogenous variables 

– Variables that are meaningful for the scientific 
question, or about which you have some scientific 
knowledge  

• E.g. We often (but not always) know the time ordering 
of these variables 

• Includes all the variables you measure (or are 
considering measuring) 

• Might also include some variables you do not/cannot 
observe 

– Affected by other variables in the model 
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Definition: Structural Causal Model  

2. Exogenous variables (Errors) 

 

– Not affected by other factors in the model 

– All the unmeasured factors not included in X that 
go into determining the values that the X variables 
take 

• U collapses all these unknown factors into one variable 

– We denote the distribution of these  factors PU  
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Definition: Structural Causal Model  

3. Functions 

– The functions F define a set of structural 
equations for each of the endogenous variables 

– For each endogenous variable in Xj, we specify its 
parents Pa(Xj): Endogenous variables that may 
affect the value of Xj 

 

 

 

– One option: include in Pa(Xj) all variables that 
temporally/causally precede Xj  
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Structural Causal Model  

• Given an input u, the functions F deterministically 
assign a value  to each of the endogenous variables 

 

• Our model says that the distribution of (U,X) is 
generated by 

1. Drawing a multivariate U from a specific probability 
distribution PU  

2. Deterministically assigning X by plugging U into the 
set of functions F  

– A given input u gives us a specific realization x 
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SCM Encode Causal Assumptions 

• Assumptions about how the variables X were 
generated in the system we want to study 

• What factors does “Nature” (or the 
“experiment” that generated the data in the 
system we want to study) consult when 
assigning a value to these variables? 

– What do we know about factors that determine 
whether an individual gets an MI? 

– What do we know about factors that affect 
whether a patient is prescribed abacavir? 
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Example: Abacavir and Cardiovascular 
Disease 

• Question: Does use of abacavir (ABC) increase 
risk of myocardial infarction (MI)? 

• To introduce concepts and notation, assume a 
simplified single time point data structure: 
– A: treatment with ABC at the start of follow up 

– W: patient covariates measured prior to decision 
whether to treat with ABC  
• Cardiovascular risk factors, renal disease, intravenous drug 

use…. 

– Y: an indicator that a patient experiences an MI by the 
end of the study 
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Example: SCM for Point Treatment 

• X={W, A, Y} 
– W=CHD Risk Factors,… 
– A=ABC use 
– Y= MI 

• Errors: U=(UW,UA,UY) ~PU 
 

• Structural equations: 
 

• Distribution of (U,X) 
generated by: 

1. Draw U from PU 
2. Generate W as a 

deterministic function of 
UW 

3. Generate A as a 
deterministic function of 
W and UA 

4. Generate Y as a 
deterministic function of 
W, A, UY 
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Non-Parametric Structural Equation 
Models 

• The structural equations do not restrict the 
functional form  of the causal relationships  
– Ex: A=fA(W,UA) vs. A=β0+β1LDL+β2HTN+…+UA 

– If you have real knowledge about the functional form 
of a structural equation, you can incorporate it 

• Similarly, we do not impose unsupported 
assumptions on the error distribution 

• The use of non-parametric structural equation 
models allows us to respect the limits of our 
knowledge 
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Assumptions on the SCM (1):  
Exclusion Restrictions 

• We make assumptions by leaving X variables 
out  of a given parent set 

– Excluding a variable from Pa(Xj) assumes it does 
not directly affect what value Xj takes 

– Leaving a variable in Pa(Xj) means it might (or 
might not) affect what value Xj takes 

 

 

– One option: include in Pa(Xj) all variables that 
temporally precede Xj  
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Assumptions on the SCM (2): 
Independence Assumptions 

• Independence assumptions restrict the 
allowed distributions for PU 

• Ex. Assume UA  is independent of UY 

– Corresponds to saying that A and Y share no 
common causes outside other than those 
included in X 

– When might this be reasonable? 
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More on assumptions to come… 

• Assumptions (at least on PU) will be necessary if we want 
to make causal inferences with observational data 
– We will come back to this when we talk about identifiability 

• Our goals 

1. Whenever possible, restrict our assumptions to those 
supported by our knowledge 

2. When we have to make more questionable 
(“convenience”) assumptions  
– Make them explicitly so that we can evaluate them better 

and interpret results appropriately 

– Limit them to (causal) assumptions that do not change the 
statistical model 
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Structural Causal Model 

• Defines set of allowed distributions for (U,X) 

• Specifically, this is the set of possible distributions 
PU,X  defined by 
– All the joint distributions PU compatible with any 

independence assumptions 

– All the specifications of the functions F=(fXj: j) 
compatible with any exclusion restrictions  

• We will call this model MF 
– Each distribution included in the model is indexed by a 

specific distribution PU and specific functions F  
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Structural Model Defines a Graph 

• Connect parents to 
children with an arrow 

– Makes the asymmetry of 
the equations explicit 

• Each endogenous X 
variable has an error (U) 

• Correlations between 
errors encoded in 
dashed lines/double 
headed errors. 
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Alternative Representation  

A 
Y 

W 

Z 

• Include as a node any 
unmeasured common 
cause of at least 2 of the X 
variables 
– Doesn’t have to represent a 

specific variable that you 
understand well 

– Just an alternative way to 
express there may be such a 
variable (or variables) 

• The remaining errors will 
be independent  
– Customarily omitted from 

the graph 
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Defining a Target Causal Parameter 

• Recall our motivation:  
 experimental conditions under which we observe 

a system ≠ experimental conditions we are most 
interested in 

• The process of translating our background 
knowledge into a SCM required us to be specific 
about our knowledge of existing experimental 
conditions 

• The process of translating our scientific question 
into a target causal parameter requires us to be 
specific about our ideal experimental conditions 
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Defining a Target Causal Parameter 

• Step 1. Decide which variable or variables we 
want to intervene on 
– “Exposure” or “Treatment” 

– We are interested in a system that modifies the way 
these variables are generated 

– For now focus on one variable at a single time point 
• Lots of times you are interested in intervening on more than 

one variable/time point 

• We will get to that 

– We refer to this variable as the intervention variable, 
and typically use “A” to represent it 
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Defining a Target Causal Parameter 

• Step 2. Decide what kind of intervention we are 
interested in 
– For now, we will focus on “static” interventions 

• Interventions that deterministically set A equal to some fixed 
value(s) of interest 

– There are other options 
•  E.g. dynamic interventions: Set A in response to the values 

of other variables 

• Step 3. Specify an outcome (or outcomes) 
– Again, we’ll focus on a single outcome at a single time 

point for now 
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Example: Abacavir and Cardiovascular 
Disease 

• Question: Does use of abacavir (ABC) increase 
risk of myocardial infarction (MI)? 

1. What is the intervention variable? 

2. What is the intervention? 

3. What is the outcome? 
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Counterfactuals 

• Ya for an individual is the value that variable Y 
would have taken for that individual if that 
individual had received treatment A=a 

– “Counterfactual” because the individual may not 
have actually received treatment A=a 

– Also referred to as “Potential Outcomes” 
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Counterfactuals can be derived from 
the SCM 

• Structural equations are autonomous 
– Changing one function does not change the other 

functions 

• Can intervene on part of the system and see 
how changes are transmitted through the rest 
of the system 
– To make inferences about data generated by the 

same system under different conditions, we have 
to know which parts of the system will change and 
which parts will stay the same 
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Interventions on the SCM 

• The autonomy of structural equations means that we 
can make a targeted modification to the set of 
equations in order to represent our intervention of 
interest  

• Ex. Intervene on the system to set A=1 
– Replace fA with constant function A=1 
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Counterfactuals derived from SCM 

• Ya(u) is defined as the solution to the equation fY 
under an intervention on the system of equations 
to set A=a (with input U=u) 
– We can think of u as the background factors of each 

subject 

– Ya(u) is a realization 
• It is implied by F and u 

• PU and F induce a probability distribution on Ya 
just as they do on Y 
– Ya=Ya(U) is the post-intervention (or counterfactual) 

random variable   
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Ex: Counterfactuals derived from SCM 
• Post-intervention 

Structural equations 
• Endogenous variables: 

 X={W, A, Y} 

• W=CHD Risk Factors,… 
• A=ABC use 
• Y= MI 

• Errors: U=(UW,UA,UY)~PU 

 

 

 

• Interventions of interest: Set A=1 and A=0 
• Counterfactuals of Interest: 
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Defining a target causal parameter 

1. Decide which variable we want to “intervene 
on” and what the interventions of interest are 

2. Decide outcome of interest 

 Steps 1 and 2 define our counterfactual outcomes  
of interest (and our SCM defines a model for the 
distribution of these counterfactuals) 

3. Specify what parameter of the distribution of 
these counterfactual outcomes we are 
interested in… (our target causal quantity) 
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Example: Average Treatment Effect:  

• How would expected outcome have differed if 
everyone in the population had been treated 
vs. if no one in the population had been 
treated? 

– This is a common target of inference.  

– This is what many RCTs are trying to estimate…. 

 

 

Distribution of Ya is given by  PU and F, or alternatively, by PU,X 
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Examples: Other counterfactual 
parameters 

• For binary Y:  

– Causal Relative Risk 
 

– Causal Odds Ratio 

 

• May be interested in a causal effect within 
certain strata of the population… 
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Marginal Structural Models 

• Specify a (working) model for  E(Ya) or E(Ya|V) 

• Useful when interested in  

– Dose response curves for multi-level/continuous 
exposures 

– Effect modification by multi-level covariates 

• Ex. A: Abacavir dose 

 Y: Renal function 
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Specify the Observed Data 

• Simple Abacavir Example: Observed data for a 
given subject: O=(W,A,Y) 
– Baseline covariates W= CHD risk factors 

– Exposure A= ABC Use 

– Outcome Y= MI 

 

• Later today, we will address missing data, 
longitudinal data, right censoring and time to 
event outcomes… 
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Linking the Observed Data to the SCM 

• Defining the statistical estimation problem 
requires specifying the link between 
endogenous variables X and the observed 
data O 

– In other words, we specify how the observed data 
were generated by the data generating system 
encoded in our SCM 

• For our simple example, O=X 

– Can specify other links as well  
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Linking the Observed Data to the SCM 

• We observe a sample of size n of the random 
variable O 

– For now we will work with independent samples 

– The framework is not restricted to this 

• We assume our observed data were generated by 
sampling n times from the data generating 
system specified in our causal model 

• This gives us n i.i.d. copies O1,O2,…,On drawn 
from true probability distribution P0 
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The Statistical Model 

• The model MF (set of possible distributions 
for U,X) implies a model (set of possible 
distributions) for O 

• We refer to this set of possible distributions as 
the statistical model M 

• The true distribution P0 of O is an element of 
M 
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The Statistical Model 

• Often, a model that respects the limits of our 
knowledge puts no restrictions on the set of 
allowed distributions for O  

• In this case our statistical model is non-
parametric 

• We need to respect this fact when we frame 
the statistical estimation problem 
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Overview of Identifiability 

• What we want (target of inference): ΨF(PU,X) 

– Ex. 

 

•  What we have: a sample from the observed 
data distribution 

– Ex. n i.i.d. observations of O~P0 

– Can use this to make inferences about parameters 
of the observed data distribution: Ψ(P0)  
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Overview: Identifiability 

• Identifiability in a nutshell:  

 Can we write ΨF(PU,X) as Ψ(P0) ? 

 

• Slightly more formally, we need that: 

 For each PU,X  in MF (each PU,X  compatible 
with the SCM) we have that ΨF(PU,X) = Ψ(P0) 
for some Ψ 
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Identifiability for Point Treatment 

• Focus here on identifiability for the effect of a 
single intervention (point treatment) when 
baseline covariates have been measured 

 

• We will focus on one identifiability result:  
– “G-computation formula” 

• Holds under 
– Randomization assumption 

– Backdoor criterion  
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Example: Identifiability Problem 
• SCM MF : 

– X=(W,A,Y); U=(UW,UA,UY)~PU 

– F: No exclusion restrictions or independence 
assumptions 

• Observe: O=(W,A,Y)~P0 

• Statistical model M is non-parametric 

• Target: ΨF(PU,X)=EU,X(Y1-Y0) 

• Can we write ΨF(PU,X,0) as a parameter of P0? 
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Identifiability of Point Treatment Effects 
under the Randomization Assumption  

 
• Randomization Assumption (RA): 

 

• Identifiability Result 
 

 By definition of counterfactuals 

Under the randomization assumption 
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Identifiability of Point Treatment Effects 
under the Randomization Assumption  

 
• If the Randomization Assumption  

 holds then: 

 

• This gives us the G-computation formula 

 

 

 

ΨF(PU,X) Ψ(P0): “estimand” 
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A graphical approach to identifiability: 
The Back-door Criterion 

• Conditional on W, we want to be sure that any 
observed association between A and Y is due to 
the effect of A on Y we are interested in 

• This means we need to 

1. Block all spurious sources of association  

2. Not create any new spurious sources of 
association 

3. Leave the causal paths we are interested in 
unperturbed 
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What causal structures can lead to 
dependence between two observed 

variables? 

1. Direct and Indirect Effects 

– An effect of A on Y can result in an association 
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What causal structures can lead to 
dependence between two observed 

variables? 

1. Direct and Indirect Effects 

– An effect of A on Y can result in an association 

– Conditioning on an intermediate “blocks” this 
source of dependence 
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What causal structures can lead to dependence 
between two observed variables? 

2. Shared  common cause 

– A common cause (measured or unmeasured) of A 
and Y can result in an association 

– When the common cause is not included in X, it is 
represented through the correlation it induces 
between errors U 
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What causal structures can lead to dependence 
between two observed variables? 

2. Shared  common cause 

– A common cause (measured or unmeasured) of A 
and Y can result in an association 

– Conditioning on a common cause “blocks” this 
source of dependence 
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What causal structures can lead to dependence 
between two observed variables? 

3. Conditioning on a Collider 

– Collider= “inverted fork” a->b<-c 

– A and Y are independent 
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What causal structures can lead to dependence 
between two observed variables? 

3. Conditioning on a Collider 

– Collider= “inverted fork” a->b<-c 

– Conditioning on a common effect (descendent) 
of A and Y can result in association between A 
and Y 

• Berkson’s bias/ selection bias 
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The Back-door Criterion 

• Conditional on W, we want to be sure that any 
observed association between A and Y is due to 
the effect of A on Y we are interested in 

• This tells us what characteristics W should have 

1. W should block any association between A and 
Y that arises from unmeasured common causes 

2. W should not create any new non-causal 
associations between A and Y 

3. W should not block any of the effect of A on Y 
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Back-door criterion 
• A set of variables W satisfies the back door 

criterion with respect to (A,Y) if 
1. No node in W is a descendent of A 

– Motivation: 
1. Avoid blocking the path of interest 

2. Avoid introducing spurious sources of dependence  

2. W blocks all “backdoor” paths from A to Y 

– Backdoor path= path with arrow into A 

– Motivation: Block all sources of spurious 
association between A and Y (due to common 
causes) 
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Example 

• Back door criterion satisfied for the effect of A 
on Y by: 

– {} (nothing)? 

– {C}? 

– {B,C}? 
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Summary: Identifiability for Point 
Treatment Effects 

• Under what sets of independence assumptions 
will the G-computation identifiability result hold? 
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Positivity Assumption 

• Need E0(Y|A=a,W=w) to be well-defined for all 
possible values (a,w) 

• In non-parametric model, each treatment of 
interest occur must with some positive 
probability for each possible covariate history 

• Let g0(a|W) denote P0(A=a|W) 

• Positivity assumption: 
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Our initial model assumptions are not 
sufficient. Now what? 

• ΨF(PU,X) is not identified under MF 
– If we are honest with ourselves about the limits of 

what we know, this happens a lot! 

• Options 
– Go get some more data/background research 

– Give up 

• But…. Lots of questions require a timely “best 
guess” to inform ongoing decisions !?! 
– Goal: Get the best answer you can and be honest 

and transparent when interpreting results 
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Our initial model assumptions are not 
sufficient. Now what? 

• ΨF(PU,X) is not identified under MF 

– We know which additional assumptions would 
serve to identify ΨF(PU,X) 

• We will use MF* to refer to the original SCM + 
these additional assumptions 

• This gives us a way to proceed, while keeping 
separate our real knowledge and our wished 
for identifiability assumptions 

– Useful in the interpretation stage!  
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Commit to statistical model and target 
parameter of the observed data 

• The Causal model MF implies a statistical model 
M for the distribution of the observed data O~P0 

– Preference for statistical model implied by MF vs. 
MF* (ensures that at least get a statistical estimation 
problem that respects the limits of our knowledge) 

• Our identifiability result provides us with a target 
parameter of the observed data distribution (or 
estimand) Ψ(P0) 

• The statistical estimation problem is now 
defined 
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1. Causal 
 Model 

3. Data 

2. Question 

Statistical  
Model 

4. Identified? 5. Estimand 

Convenience  
assumptions 

6. Estimator 

7. Interpretation 

A Roadmap…. 

Y 

N 
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1. Causal 
 Model 

3. Data 

2. Question 

Statistical  
Model 

4. Identified? 

5. Estimand 
Equal or as 
close as 
possible to the 
target causal 
quantity 

A Roadmap…. 

No 
Convenience  
assumptions 

Yes 
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So when is a path blocked? 

• Path= set of connected edges (any 
directionality) 

• A path is blocked if 

– It has a non-collider that has been conditioned on 

Or 

– It has a collider and neither the collider nor a 
descendent has been conditioned on 
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What does our model assume? 
      

67 

• Example 2: • Example 1: 

 

 

 

 

 

 W=Flu virus 
A= Headache 
Y=Cough 

W= Parental education 
A= Random selection to 
receive school voucher 
Y=Test scores 



Assume UA independent of UY? 
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• Example 2: • Example 1: 

 

 

 

 

 

 W=Flu virus 
A= Headache 
Y=Cough 

W= Parental education 
A= Random selection to 
receive school voucher 
Y=Test scores 



Conditioning on the whole past and only the past 
is not always a good idea… 

• Ex 1. O=(W,A,Y); W occurs before A  

– RA fails conditional on W 

– RA holds conditional on {} 

 

• Ex 2. O=(W,A,L,Y); L occurs after A 

– RA fails conditional on W 

– RA holds conditional on (W,L) 

 

69 

A Y 

W Z1 
Z2 

A Y 

L Z 

W 


