Innovative Tools for Quantitative Analysis of NAFLD Histology

Samer Gawrieh, MD Associate Professor of Clinical Medicine Indiana University School of Medicine

Biopsy sample analysis

Current State:

Manual and Semi-quantitative Grading of NAFLD Lesions

- NAFLD Activity Score (NAS) = MS + LI + HB
 - 0-3 for MS and LI
 - 0-2 for HB
 - 0-8 for NAS
 - 0-4 for FS

Kleiner DE et al. Hepatology 2005

Observer Agreement (k) on Reading NAFLD Histological Features

(65 biopsies, 2 pathologists, 260 readings)

Inter-observer agreement

SCHOOL OF MEDICINE

Gawrieh S et al. Ann Diagn Pathol 2011

Reported Inter-observer Agreement (κ) on Interpretation of NAFLD Histology

	Poor	Slight	Fair	Moderate	Substantial	Almost perfect	t	
Kapp	oa 0.0	.20	.40	.60	.80	1.0		
Feature Inter-Observer Agreement								
	Younossi	Fukus	sato	Kleiner	Juluri	Gawrieh	Davison	
	1998	2005		2005	2011	2011	2020	
Cases (n)	53	8		32	48	65	339	
Observers (n)	4	21		9	2	2	3	
SG	0.64	0.53		0.79	0.62	0.65-0.74	0.61	
FS	0.60	0.55		0.84	0.35	0.54-0.56	0.48	
LI	0.21	0.09		0.45	0.44	0.20-0.23	0.33	
PI	0.18	0.19		0.45		0.32-0.41		
НВ	0.50	0.14		0.56	0.25	0.18-0.28	0.52	
Diagnosis	0.50	0.21		0.61	0.46	0.27-0.39	0.40	

Interventions

Education / training

Slide review Discussion of diagnostic criteria

Scoring sheet

Simplified written criteria for diagnosis

Fatty liver disease sco	ring sheet Photo case
Patient S#	MRN
Steatosis grade 0 ≤ 5% 1=6-33% 2=34-66% 3=>67%	Zone 3 Hepatocyte ballooning 0=none 1=few balloon cells 2=many balloon cells
Steatosis predominant distribution 0=Zone 3 1=Zone 1 2=Azonal 3=Panacinar	Mallory's hyaline 0=None to rare 1=Many
Microvesicular steatosis 0= Not present 1=Present	Diagnosis 1. Fatty liver 2. Possible/borderline SH 3. Steatohepatitis (SH)
Fibrosis stage	4. Normal
1=Perisinusoidal or periportal 1A=Mild, zone 3, perisinusoidal 1B=Moderate, zone 3, perisinusoidal 1C=Portal/periportal, 2=Perisinusoidal and portal/periportal 3=bridging fibrosis	Additional or other diagnosis
4=cirrhosis Lobular inflammation	<u>* FATTY LIVER</u> diagnosed when ONLY STEATOSIS (> 5 %) is present
1= 2 foci/200 x field 2= 2-4 foci/200 x field 3=>4	* Steatohepatitis (SH) is steatosis + 2 of the following zone 3, centric features
Portal inflammation	1. Hepatocellular ballooning
1=mild	2. Inflammatory infiltrate
2=moderate 3=severe	3. Pericellular/Perisinusoidal fibrosis
4 th edition 1-30-07	*Possible/borderline SH is steatosis + 1 of the above zone 3. centric features

U

Pre- and Post-Intervention Observer Agreement (k) on NAFLD Histological Features and Phenotype

(65 biopsies, 2 pathologists, 520 readings)

Feature	Intra-o	bserver	Inter-observer			
	Pre	Post	Pre	Post		
Steatosis grade	0.72	0.75	0.65	0.74		
Fibrosis stage	0.64	0.75	0.54	0.56		
Lobular inflammation	0.37	0.48	0.23	0.20		
Portal inflammation	0.46	0.58	0.41	0.32		
Hepatocellular ballooning	0.32	0.56*	0.28	0.18		
Diagnostic classification	0.51	0.54	0.27	0.39		

* p for pre-versus post comparisons was significant only for intra-observer k on HB (0.009)

Gawrieh S et al. Ann Diagn Pathol 2011

NAFLD epidemic is on the rise, new approaches to decrease interobserver variability in interpretation of NAFLD histology are urgently needed. Refined histopathologic criteria and training on assessment of HB and LI would likely have the largest impact on reproducibility of NAFLD phenotyping and staging. Automation of assessment of NAFLD histologic features to improve accuracy and reproducibility of the interpretation is another consideration. This can be envi-

What to Detect and Quantify: Cardinal NAFLD Lesions

Macrosteatosis

Lobular Inflammation

Hepatocyte Ballooning

Portal Inflammation

SCHOOL OF MEDICINE

What to Detect and Quantify: Cardinal NAFLD Lesions

Macrosteatosis

Hepatocyte Ballooning

Portal Inflammation

How to Quantify: Automation Approaches and Requirements

	Machine learning	Algorithm-based	Other (Adobe- or color-based tools)
What's quantified	NAFLD lesions	Correlates with NAFLD lesions	Usually fibrosis and/or steatosis assessment
Stains	H&E, Mason trichrome, Sirius red	Unstained/stained slides	H&E, Mason trichrome, Sirius red
Digital Slide Scanner	\checkmark	\checkmark	+/-
Equipment additional to software	None	SHG/TPEF Microscope*	None

* SHG: Second harmonic generation microscopy, PTEF: Two-photon excitation fluorescence microscopy

Machine Learning (ML)/ Artificial Intelligence (AI)

- ML: algorithms and statistical models that learn from labelled training data, from which they are able to recognize and infer patterns
- General AI: ability of a machine to communicate, reason and operate independently in both familiar and novel scenarios in a similar manner to a human
- Commonly, ML interchangeable with AI

General Approach to Developing ML Models for NAFLD Histology Analysis

Supervised Machine Learning

Deep Machine Learning and Neural Networks

Du-Harpur X et al. Br J Dermatol 2020

Pathologist Annotations Software

SCHOOL OF MEDICINE

Ψ

Annotation Attributes (Feature Vectors) with Supervised ML

Scaled Representation

(a) sigma=0 (b) sigma=1 (c) sigma=2 (d) sigma=4 (e) sigma=8

Magnitude

Level Curve Curvature

Vanderbeck S et al. Hum Pathol 2014

Internal Testing/Validation

• 10 fold cross validation

• Leave one out approach

Data used to **TEST**

Hepatocyte Ballooning Example

Classification Approach

- Tile image into equal size pieces
- Classify each tile as either containing or NOT hepatocyte ballooning
- Calculate the total percent of tissue with hepatocyte ballooning

 $\% Ballooning = \frac{total \ area \ ballooning \ tiles}{total \ tissue \ area}$

• Similar procedure for other lesions

Vanderbeck S et al. Hum Pathol 2015

White Regions on H&E Stained Liver Biopsy Images

Automated Detection of Liver Microscopic Anatomic Landmarks

	Feature	Pathologist (R.K.)			Pathologist (D.E.K.)			Combined model		
		Precision	Recall	ROC area	Precision	Recall	ROC area	Precision	Recall	ROC area
➡	Bile duct	0.92	0.87	0.98	1.00	0.56	0.93	0.911	0.82	0.99
·	Central vein	0.64	0.79	0.92	0.67	0.64	0.83	0.615	0.63	0.83
	Macrosteatosis	0.98	0.99	0.98	0.92	0.94	0.96	0.957	0.98	0.97
	Other	1.00	0.86	0.99	0.76	0.69	0.90	0.860	0.63	0.94
	Portal artery	0.85	0.77	0.97	0.67	0.18	0.94	0.667	0.59	0.96
-	Portal vein	0.91	0.77	0.97	0.81	0.88	0.97	0.825	0.84	0.97
	Sinusoid	0.90	0.89	0.96	0.80	0.79	0.92	0.859	0.86	0.94

Vanderbeck S et al. Hum Pathol 2014

Correlation and Relationship of Model Calculated Percent Steatosis with the Average of Pathologists Grade

Vanderbeck S et al. Hum Pathol 2014

Automated Continuous Quantification of Macrosteatosis

 \mathbf{O}

1

2

3

SCHOOL OF MEDICINE

Correlation of Model Calculated Percent *Hepatocyte Ballooning* with the Average of Pathologists Grade

Feature	Precision	Recall	ROC Area	
	(PPV)	(Sensitivity)		
Hepatocyte Ballooning	0.912	0.542	0.983	
Not-Hepatocyte Ballooning	0.990	0.999	0.983	
OVERALL	0.989	0.989	0.983	

SCHOOL OF MEDICINE

Vanderbeck S et al. Hum Pathol 2015

Correlation of Model Calculated Percent Lobular Inflammation with the Average of Pathologists Grade

Feature	Precision	Recall	ROC Area	
	(PPV)	(Sensitivity)		
Lobular Inflammation	0.696	0.489	0.946	
Not-Lobular Inflammation	0.968	0.986	0.946	
OVERALL	0.952	0.956	0.946	Ψ
	Vanderbeck	(Satal Hum Pathol	2015	SCHOOL OF MEDICINI

Vanderbeck S et al. Hum Pathol 2015

INDIANA UNIVERSITY

Refined Model for Lobular Inflammation and New Model for Portal Inflammation in Human NAFLD

AUROC – 97.4%, Precision – 79.3%, Sensitivity – 81.3%, AUROC – 97.9%, Precision – 82.1%, Sensitivity – 88.3%

Unpublished data

Automated Fibrosis Assessment in Human NAFLD

CPA Correlation with Pathologist DEK

CPA Correlation with Pathologist OWC

τĪτ

SCHOOL OF MEDICINE

Gawrieh S et al. Ann Diagn Pathol 2020

Automated Identification of Architectural Type of Liver Fibrosis in Human NAFLD Liver Biopsies

Fibrosis Type	Precision (%)	Recall (%)	AUROC (%)
Normal	85.6	83.3	91.9
Pericellular	76.6	82.7	83.3
Periportal	72.1	76.9	78.6
Portal	77	84.4	86.4
Bridging	84.9	91.7	93
Nodule	89.8	91.6	95.4

Gawrieh S et al. Ann Diagn Pathol 2020

Machine Learning for Automated NAFLD Histology Assessment

246 patients with NAFLD (190 with NASH, 56 with simple steatosis)

Correlation (rho) with **Pathologist's scores**

- Steatosis: 0.66
- Inflammation: 0.36
- Ballooning: 0.52
- Fibrosis: 0.57

AUROC for CPA for F≥3: 0.82

Forlano R et al. Clin Gastroenterol Hepatol. 2020

Deep Machine Learning for Automated NASH Histology Assessment

- 834 liver biopsies from subjects screened for a phase 3 trial of selonsertib (STELLAR-4) (advanced cirrhotic NASH)
- CNN with over 20 layers and 8 million parameters using over 68,000 annotations collected from 75 boardcertified pathologists

Correlations (rho) with average of two pathologists scores

Steatosis: 0.86 Inflammation: 0.56 Ballooning 0.68 Fibrosis 0.83 (CRN), 086 (Ishak)

Phenotypic Fibrosis Composite Score by FibroNest Image Analysis Platform

77 NASH Biopsies; unstained-SHG/TPEF or stained by Sirius red or trichrome-digitally scanned

Chen L et al. EASL abstract 2020

External Validation of Steatosis Classifiers in Murine NAFLD

Macrosteatosis

Microsteatosis

63%

Accuracy of labels: 100%

Sethunath D et al. Plos1 2018

Automated algorithm- and SHG microscopy-based assessment of NAFLD histology (qFIBS)

			•	Cutoff	•			•
	AUROC	95% CI	P Value	(Youden's	Sensitivity	Specificity	PPV	NPV
				Index)				
qFibrosis			-	_	_			-
F0 vs. F≥1	0.870	0.787-0.953	<0.001	0.761	94%	63%	84%	83%
F≤1 vs. F≥2	0.881	0.804-0.959	<0.001	0.882	97%	58%	65%	96%
F≤2 vs. F≥3	0.945	0.891-0.999	<0.001	1.491	96%	76%	66%	97%
F≤3 vs. F4	0.951	0.905-0.996	<0.001	2.395	87%	91%	72%	96%
qInflammation			•		•			
0 vs. ≥1	0.838	0.752-0.924	0.105	1.251	83%	100%	100%	14%
≤1 vs. ≥2	0.820	0.726-0.913	<0.001	1.357	93%	58%	58%	93%
≤2 vs. 3	0.831	0.729-0.933	0.112	1.503	100%	79%	12%	100%
qBallooning			•	•	•			•
0 vs.≥1	0.844	0.731-0.957	0.011	1.086	71%	100%	100%	20%
≤1 vs. 2	0.813	0.708-0.918	<0.001	1.266	60%	89%	67%	85%
qSteatosis				•	•			
0 vs. ≥1	0.986	0.959-1.000	<0.001	0.796	99%	100%	100%	50%
≤1 vs. ≥2	0.948	0.903-0.993	<0.001	1.572	91%	85%	83%	92%
≤2 vs. 3	0.939	0.867-1.000	<0.001	2.210	67%	98%	86%	95%

Correlation (r) with Pathologist's scores

- qSteatosis: 0.802
- qInflammation: 0.557
- qBallooning: 0.533
- qFibrosis: 0.776

Liu F et al. Hepatology 2020

Considerations for Development of Automated Methods for NAFLD Histology Analysis

- Minimum acceptable standards for liver biopsy sample
- Derivation biopsy cohort
 - Minimizing bias in biopsy selection:Representation of the entire histological spectrum of NAFLD
 - Large number of annotations by <u>expert</u> NAFLD pathologists to train the model (Different severity/typical/atypical variety of each lesion)
 - Number of expert pathologists involved? 1 vs more, observer agreement, other factors...
- Trade offs of how thresholds are set {High sensitivity/High specificity/Optimal(Youden)}

Considerations for Development of Automated Methods for NAFLD Histology Analysis

- External validation
 - Verification by experts pathologists of accuracy of lesion identification on unseen biopsy images
 - Validation of performance in different cohorts
- ? Weight of strength of correlation with semi-quantitative assessments/scores
- Lack of explanability factor for deep learning networks and regulatory approvals:
 - Unknown what attributes of a lesion are used/contribute to decision making process in nodes/networks (Black box factor)
- These tools may be viewed as complimentary decision aids/guides, not replacements, to pathologists

Current and Future States of NAFLD Histology Analysis

Current

- Manual
- Semi-quantitative data
- Limited scale
- Intra- & inter-observer variability
- Limited pool of experienced NAFLD pathologists
- Limited access to experienced NAFLD pathologists

Future: Optimize/Maximize Extracted Data

INDIANA UNIVERSITY

- Automated
- Continuous data
- Large scale
- Precise
- Reproducible
- Available
- Accessible

Pathologists are key partners in leading us through this transformation of the field

Acknowledgements

- Pathologists
 - David Kleiner, MD, PhD (National Cancer Institute)
 - Richard Komorowski, MD (Medical College of Wisconsin)
 - Oscar W. Cummings, MD (Indiana University School of Medicine)
- Computer Engineers
 - Scott Vanderbeck, M.S. and Joe Bockhurst, PhD (University of Wisconsin Milwaukee)
 - Mihran Tuceryan, PhD (Indiana University-Purdue University-Indianapolis)

