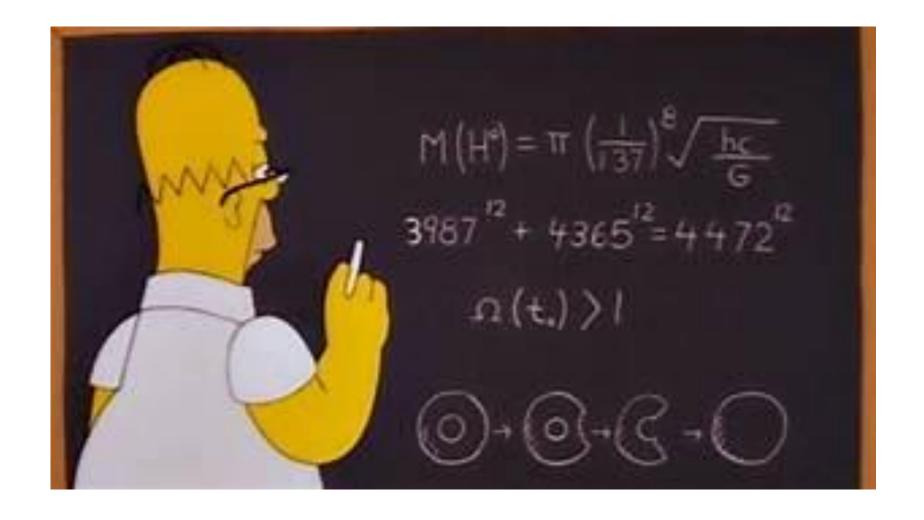


Is type 2 diabetes and NASH the same disease affecting different organs?

Pr Bertrand CARIOU, MD-PhD

L'unité de recherche de l'institut du thorax Inserm UMR 1087 / CNRS UMR 6291 Nantes, France

DISCLOSURES


Research funding: Amgen, Pfizer, Sanofi and Regeneron Pharmaceuticals, Inc.

Personal fees (Advisory board, lectures), **accomodations and travels**: Abbott, Akcea, Amgen, AstraZeneca, BMS, Genfit, Gilead, Pierre Fabre, Janssen; Eli Lilly and Company, MSD Merck & Co., Novo Nordisk, Regeneron, Sanofi and Servier.

Investigators in clinical trials: Abbott, Amgen, Astra-Zeneca, Bayer, Biose, Boerhinger-Ingelheim, BMS, Genfit, GSK, Janssen, Imcyse, Isis, Lexicon, Eli-Lilly, Novo-Nordisk, Sanofi, Regeneron

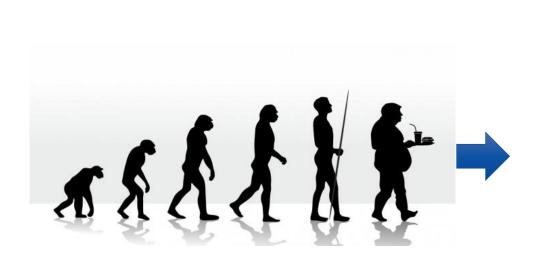
NAFLD = T2D? What does it mean?

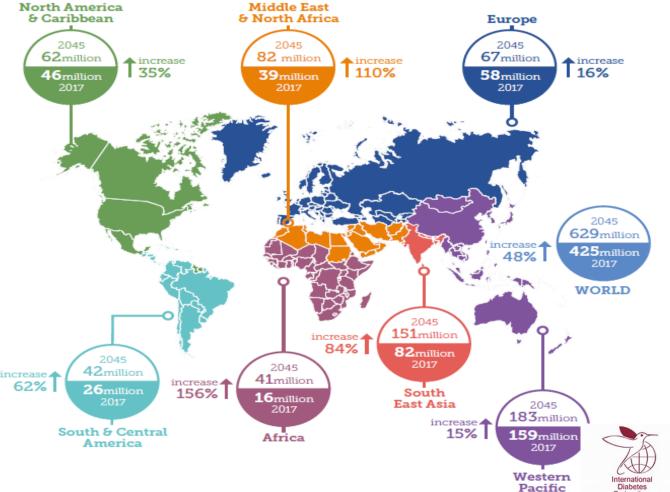
AGENDA

- 1. EPIDEMIOLOGICAL DATA
- 2. PATHOPHYSIOLOGICAL DATA
- 3. GENETIC DATA
- 4. THERAPEUTIC DATA
- 5. CONCLUDING REMARKS

AGENDA

1. EPIDEMIOLOGICAL DATA

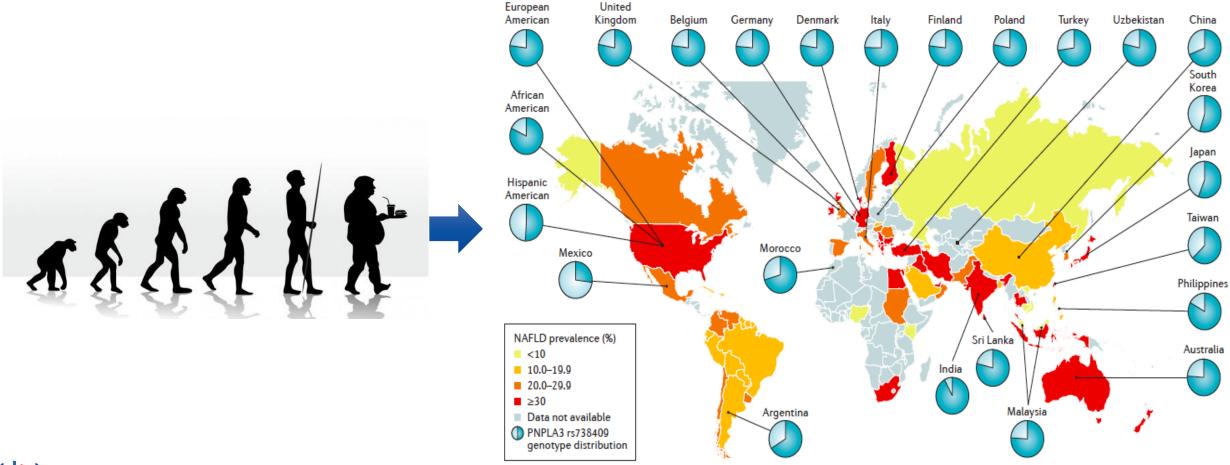

- 2. PATHOPHYSIOLOGICAL DATA
- 3. GENETIC DATA
- 4. THERAPEUTIC DATA
- 5. CONCLUDING REMARKS



EPIDEMIOLOGY:

the same world-wide metabolic pandemia for T2D and NAFLD

Number of people with diabetes worldwide and per region in 2017 and 2045 (20-79 years)



EPIDEMIOLOGY:

the same world-wide metabolic pandemia for T2D and NAFLD

EPIDEMIOLOGY: a link between obesity and T2D and NAFLD

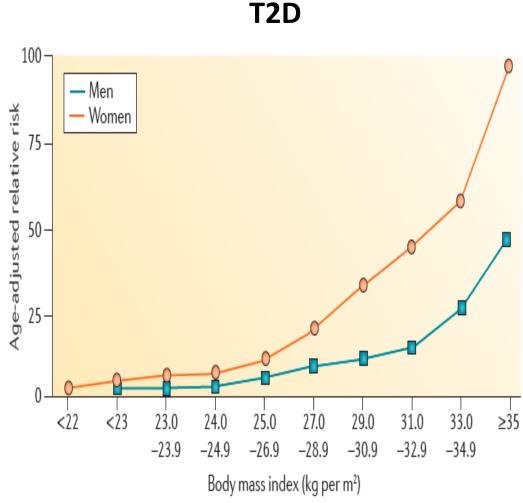
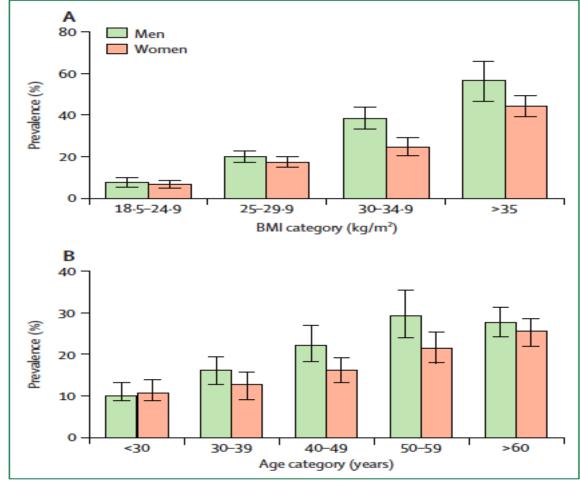
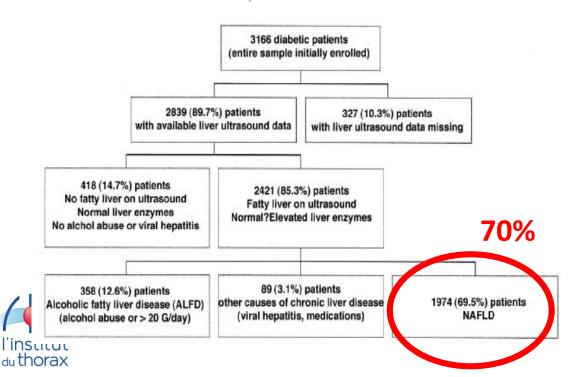


Figure 2 | Association between BMI and T2DM.

NAFLD




Figure 3: Prevalence of NAFLD according to BMI, age, and sex

WHAT IT IS THE PREVALENCE OF NAFLD in T2D?

Prevalence of Nonalcoholic Fatty Liver Disease and Its Association With Cardiovascular Disease Among Type 2 Diabetic Patients

GIOVANNI TARGHER, MD^{1,2} LORENZO BERTOLINI, MD¹ ROBERTO PADOVANI, MD¹ STEFANO RODELIA, MD³ ROBERTO TESSARI, MD¹
LUCIANO ZENARI, MD¹
CHRISTOPHER DAY, MD⁴
GUIDO ARCARO, MD¹

Diabetes Care 30:1212-1218, 2007

Epidemiology/Health Services Research

Prevalence of and Risk Factors for Hepatic Steatosis and Nonalcoholic Fatty Liver Disease in People With Type 2 Diabetes: the Edinburgh Type 2 Diabetes Study

RACHEL M. WILLIAMSON, MRCP¹
JACKIE F. PRICE, MD, FFPH²
STEPHEN GLANCY, FECR³
ELISA PERRY, MRCP, FRCR³
LISA D. NIEE, GRADDIPPAPPSCI³
PETER C. HAYES, PHD, MD⁴
BRIAN M. FRIER, MD, FRCPE⁵

LIESBETH A.F. VAN LOOK, MRCP¹
GEOFFREY I. JOHNSTON, PHD⁰
REBECCA M. REYNOLDS, PHD, FRCPE⁷
MARK W.J. STRACHAN, MD, FRCPE¹
ON BEHALF OF THE EDINBURGH TYPE 2
DIABETES STUDY INVESTIGATORS

Diabetes Care 34:1139-1144, 2011

N=939 patients with T2

43%

RESULTS—Hepatic steatosis was present in 56.9% of participants. After excluding those with a secondary cause for steatosis, the prevalence of NAFLD in the study population was 42.6% Independent predictors of NAFLD were BMI, lesser duration of diabetes, HbA_{1c}, trigly-endes, and metformin use. These remained unchanged after exclusion of participants with evidence of hepatic fibrosis from the group with no hepatic steatosis.

...AND IN PRIMARY CARE?

AP&T Alimentary Pharmacology and Therapeutics

Non-invasive screening of diabetics in primary care for NAFLD and advanced fibrosis by MRI and MRE

I. Doycheva*, J. Cui*, P. Nguyen*-†, E. A. Costa[‡], J. Hooker[‡], H. Hofflich[‡], R. Bettencourt[†], S. Brouha*+, C. B. Sirlin[‡] & R. Loomba*-†.[†]

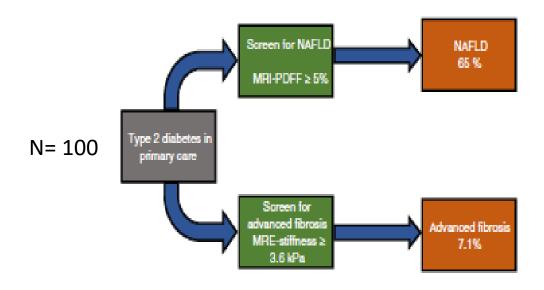
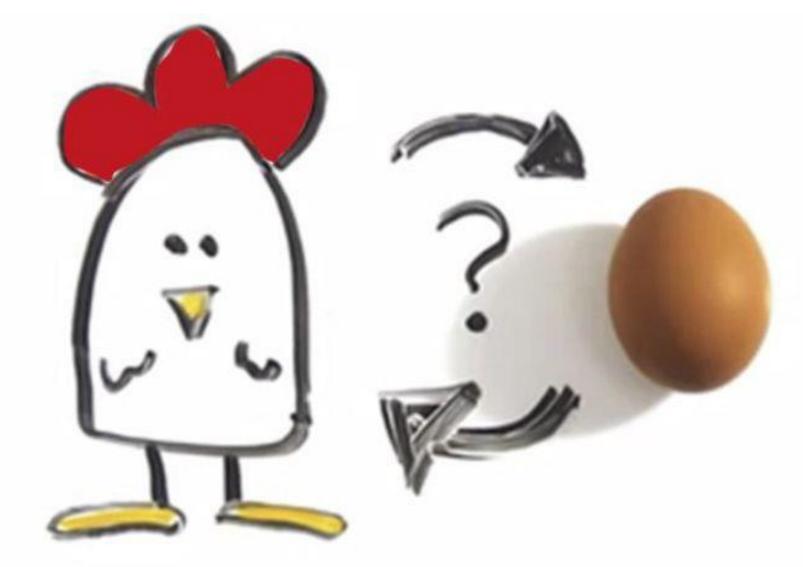


Figure 1 | Prevalence of NAFLD and advanced fibrosis among patients with type 2 diabetes in primary care. Patients with type 2 diabetes in the primary care setting were screened for NAFLD with magnetic resonance imaging-estimated proton density fat fraction (MRI-PDFF). NAFLD was defined by the presence of hepatic steatosis ≥5% on MRI-PDFF. Screening for advanced fibrosis was performed using magnetic resonance elastography (MRE) with a threshold of 3.6 kPa to identify those with advanced fibrosis.

AGENDA

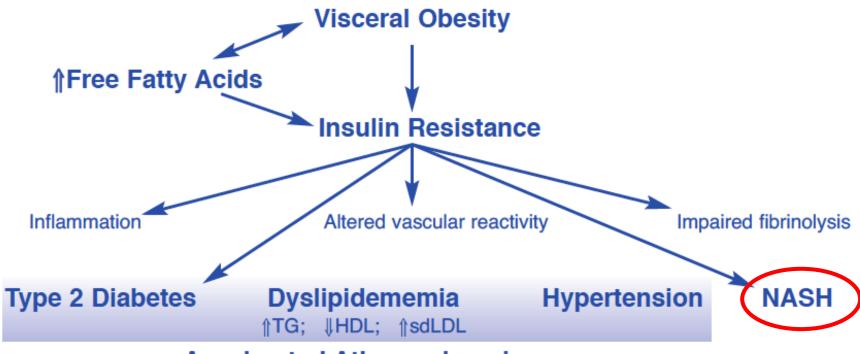
1. EPIDEMIOLOGICAL DATA


2. PATHOPHYSIOLOGICAL DATA

3. GENETIC DATA

4. THERAPEUTIC DATA

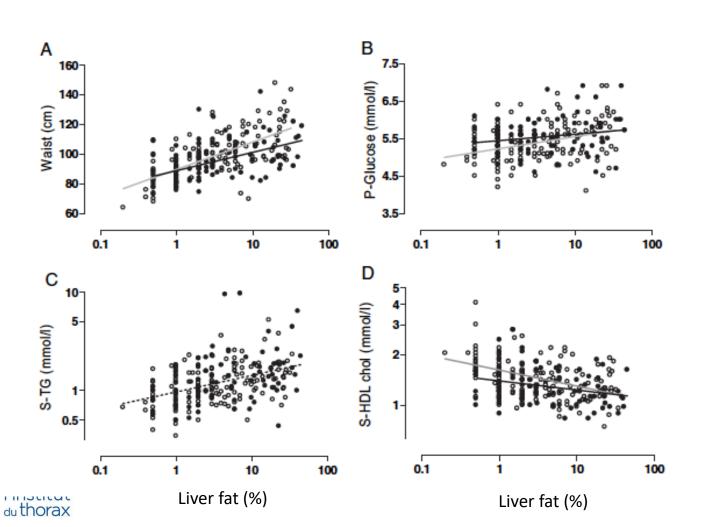
5. CONCLUDING REMARKS

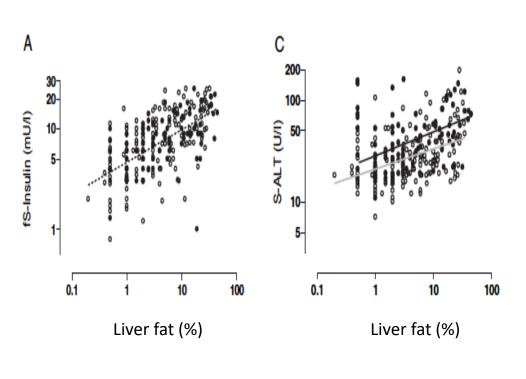


NAFLD / NASH

INSULIN RESISTANCE / T2D

Insulin Resistance and Metabolic Syndrome


Accelerated Atherosclerosis


NASH = Nonalcoholic steatohepatitis
TG = Triglycerides; HDL = high-density lipoprotein; sdLDL = small dense LDL

RELATION BETWEEN LIVER FAT AND COMPONENTS OF METABOLIC SYNDROME

271 non-diabetic subjects (162 women, 109 men) Liver fat assessed by proton MRI (spectroscopy)

RELATION BETWEEN LIVER FAT AND HEPATIC INSULIN RESISTANCE

45 non-diabetic men; hyperinsulinemic-euglycemic clamps

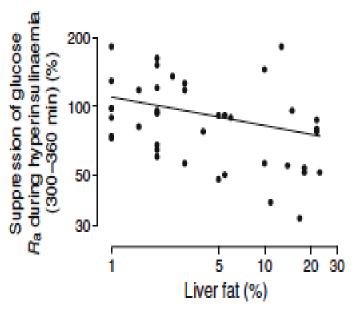


Fig. 4 Graph showing the relationship between percentage suppression of endogenous glucose production during the last hour of hyperinsulinaemia (300–360 min, log scale) and liver fat content (log scale) in individual participants (circles). r=-0.30, p<0.05

PATIENTS WITH NAFLD DISPLAY INSULIN RESISTANCE AS IN T2D

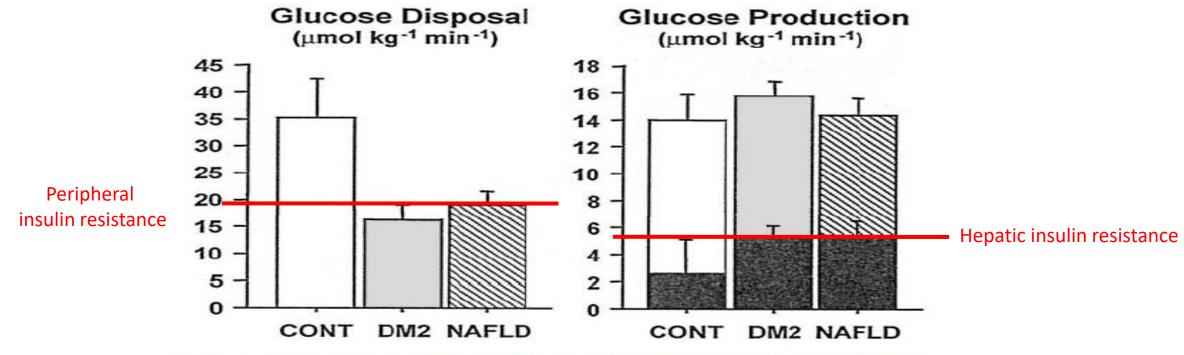


FIG. 3. Glucose disposal in the course of the clamp and hepatic glucose production in the subgroup of subjects infused with $[6,6^{-2}H_2]$ glucose. The subgroups—control subjects (CONT; open columns; n=5), type 2 diabetic patients (DM2; shaded columns; n=5), and NAFLD subjects (hatched columns; n=10)—are representative of the whole population. Black bars represent hepatic glucose production at the end of the clamp study. Data are presented as means and 95% CI.

Hepatic rather than intramyocellular fat content is associated with features of Met-S

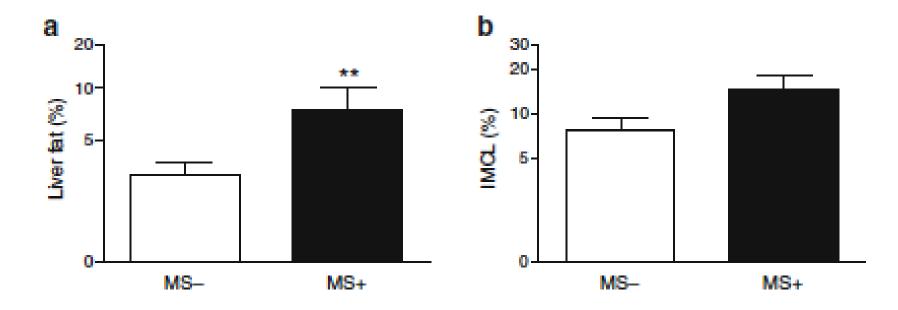
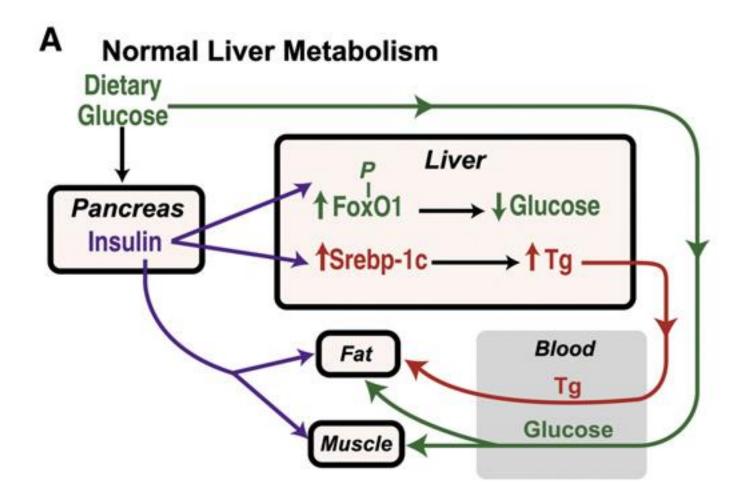
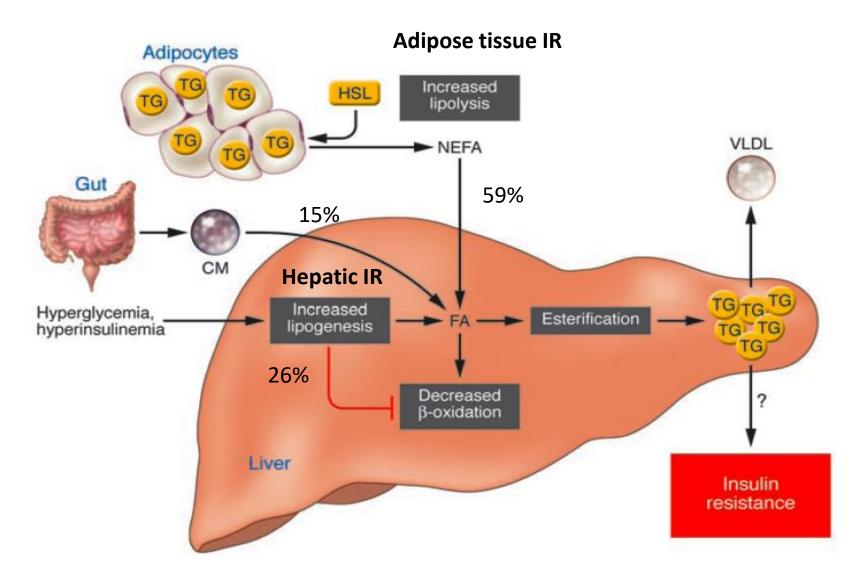



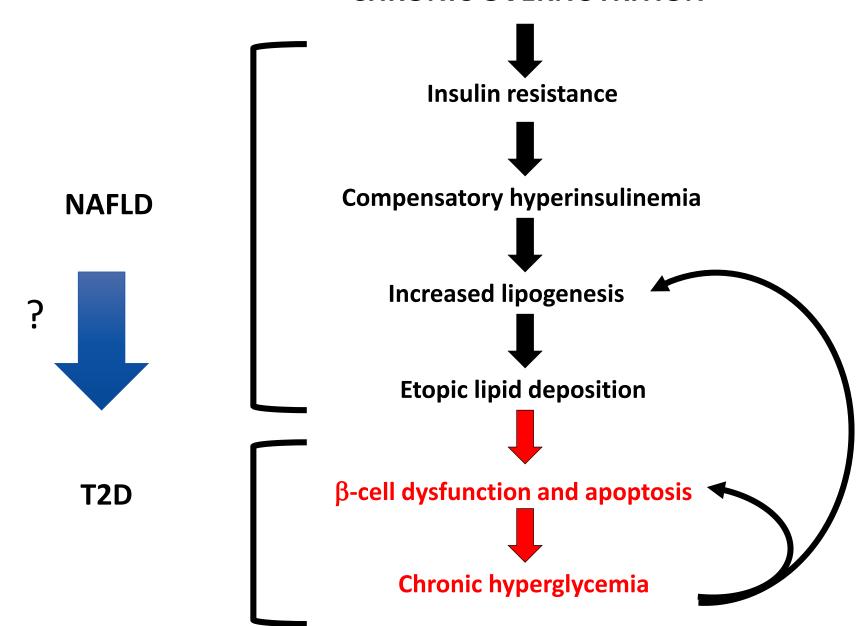
Fig. 3 Bar graphs (log scale) showing liver fat (a) and IMCL (b) in participants without (-) and with (+) the metabolic syndrome (MS).
**p<0.01 vs individuals without the metabolic syndrome</p>

SELECTIVE HEPATIC INSULIN RESISTANCE: A molecular basis for T2D



SELECTIVE HEPATIC INSULIN RESISTANCE: A molecular basis for T2D

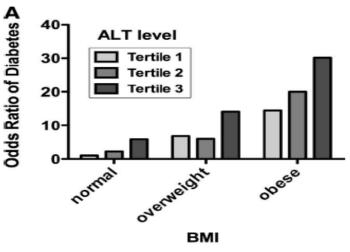
В Type 2 Diabetes - Selective Insulin Resistance DIETARY GLUCOSE **Pancreas** SREBP-1c→↑TG Blood **↑TG** GLUCOSE

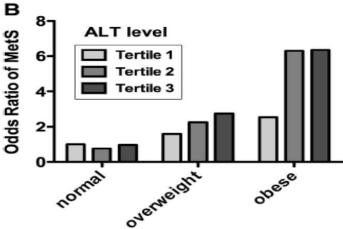


NAFLD/NASH: PATHOPHYSIOLOGY

CHRONIC OVERNUTRITION

NAFLD is a risk factor for new onset type 2 diabetes


Framingham cohort - 20 years follow-up


Table 4. Baseline ALT and AST and the OR of Developing Incident DM Over 20 Years of Follow-Up

	Overall sam	ple	AST or ALT in the normal range		
	OR (95% CI)	P value	OR (95% CI)	P value	
AST					
Age/gender adjusted	1.41 (1.25-1.60)	< .0001	1.32 (1.12-1.55)	.001	
MV adjusted ^a	1.33 (1.16-1.52)	< .0001	1.24 (1.04-1.48)	.02	
+ glucose adjusted	1.25 (1.08-1.45)	.002	1.15 (0.96-1.39)	.13	
+ interim weight change	1.33 (1.17-1.53)	< .0001	1.24 (1.04-1.48)	.02	
ALT	, ,		, ,		
Age/gender adjusted	1.72 (1.51-1.94)	< .0001	1.62 (1.36-1.94)	.0001	
MV adjusted ^a	1.48 (1.30-1.69)	< .0001	1.34 (1.11-1.61)	.002	
+ glucose adjusted	1.42 (1.23–1.63)	< .0001	1.28 (1.05–1.55)	.01	
+ interim weight change	1.48 (1.30-1.69)	< .0001	1.34 (1.11-1.61)	.002	

NOTE. The OR of developing incident DM was calculated per 1 gender-specific SD increase in log-transformed aminotransferase levels. AST, aspartate aminotransferase; ALT, alanine aminotransferase; OR, odds ratio; CI, confidence interval; MV, multivariable. aAdjusted for age, gender, smoking, menopause, alcohol use (g/day), BMI.

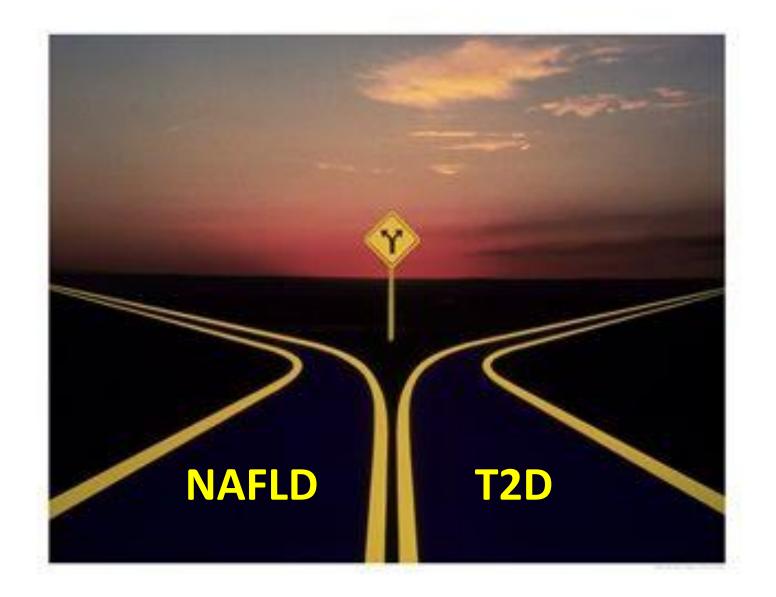
NAFLD is a risk factor for type 2 diabetes

13 218 non-diabetic Korean subjects followed during 5 years

Table 4. Odds Ratios for Incident Diabetes at Follow-Up According to Fatty Liver Status at Baseline and at Follow-Up

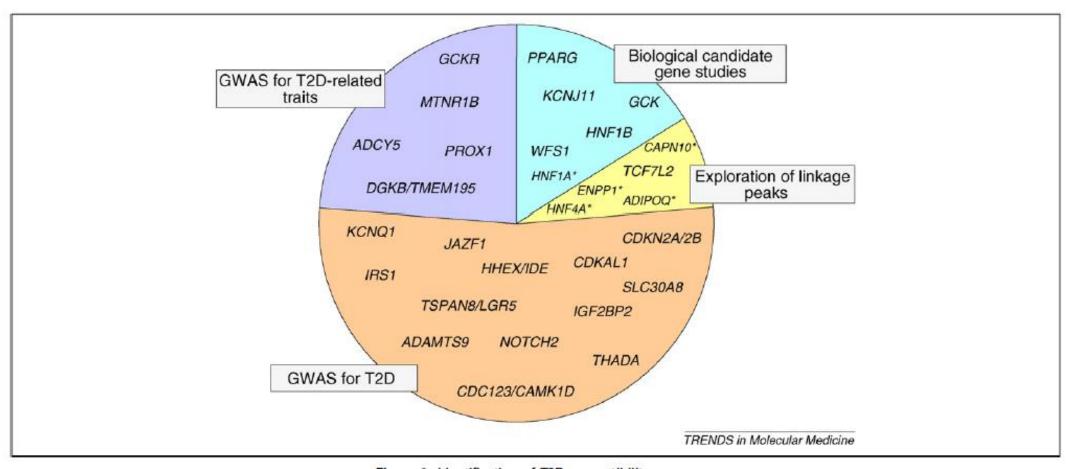
	Incident DM, n (%)	Model 1 Odds Ratio 95% Cls P Value	Model 2 Odds Ratio 95% CIs P Value	Model 3 Odds Ratio 95% Cls P Value	Model 4 Odds Ratio 95% Cls P Value
Reference					
No fatty liver at both baseline and at follow-up, no fatty liver (n = 7918)	39 (0.5%)	1	1	1	1
Fatty liver at baseline but not follow-up	12 (1.5%)	2.63 (1.36, 5.07)	0.89 (0.44, 1.82)	0.98 (0.48, 2.02)	0.95 (0.46, 1.6)
(n = 828)		.004	.75	.97	.89
No fatty liver at baseline, but fatty	35 (2.1%)	4.06 (2.55, 6.47)	2.86 (1.73, 4.71)	2.59 (1.56, 4.30)	2.49 (1.49, 4.14)
liver at follow-up (n = 1640)		<.001	<.001	<.001	<.001
Fatty liver at baseline and	148 (5.2%)	9.93 (6.88, 14.35)	3.27 (2.14, 5.02)	3.13 (2.04, 4.81)	2.95 (1.91, 4.54)
at follow-up (n = 2832)		<.001	<.001	<.001	<.001
Fatty liver at baseline and remaining	98 (4.3%)	8.22 (5.55, 12.17)	2.97 (1.83, 4.81)	2.92 (1.80, 4.75)	2.78 (1.70, 4.53)
static at follow-up (n = 2275)		<.001	<.001	<.001	<.001
Fatty liver at baseline and worsening	27 (8.3%)	15.6 (9.23, 26.18)	9.28 (4.42, 19.46)	7.82 (3.63, 16.86)	7.38 (3.36, 16.22)
in severity at follow up (n = 324)		<.001	<.001	<.001	<.001

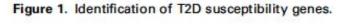
Abbreviation: DM, diabetes mellitus. Model 1 was adjusted for baseline age and sex. Model 2 was adjusted for baseline age, sex, BMI, glucose, insulin, baseline triglycerides, HDL-C, systolic BP, alcohol, smoking, and physical activity. Model 3 was adjusted for baseline age, sex, BMI, glucose, insulin, baseline triglycerides, HDL-C, systolic BP, alcohol, smoking, physical activity, and change in BMI between baseline and follow-up. Model 4 was adjusted for baseline age; sex; BMI; glucose; insulin; baseline triglycerides; HDL-C; systolic BP; alcohol use; smoking; physical activity; change in BMI between baseline and follow-up; and ALT, AST, and GGT.

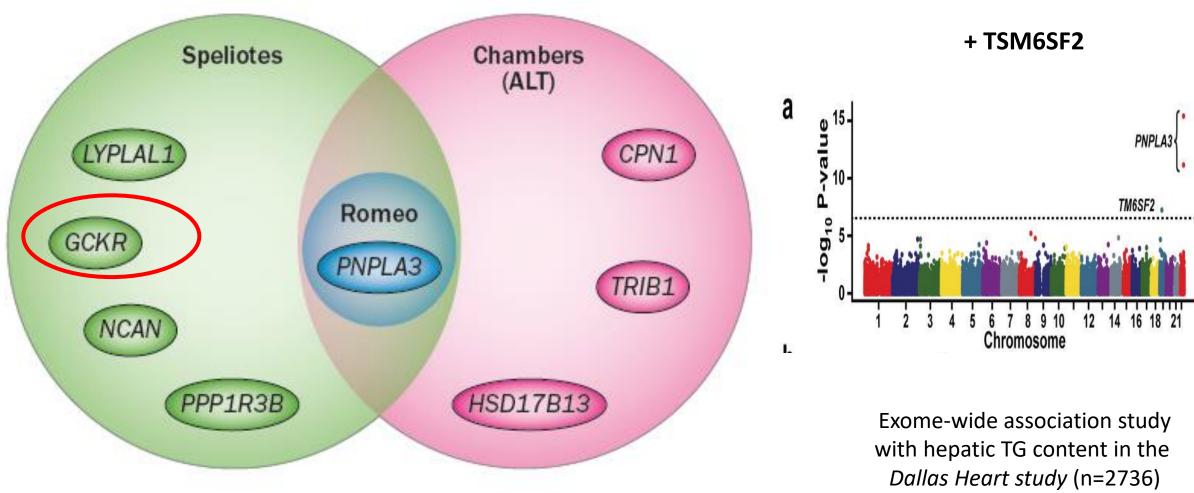


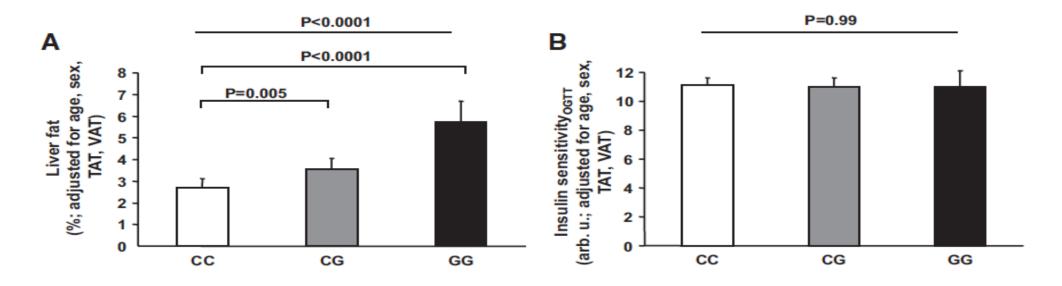
AGENDA

- 1. EPIDEMIOLOGICAL DATA
- 2. PATHOPHYSIOLOGICAL DATA
- 3. GENETIC DATA
- 4. THERAPEUTIC DATA
- 5. CONCLUDING REMARKS




NAFLD and T2D: a same disease? The dilemna of genetics


GENETICS OF T2D: THE GWAS ERA


GENETICS OF NAFLD: THE PREDOMINANT ROLE OF PNPLA3

NAFLD does not always correlates with insulin resistance...

1. The SNPs rs738409 of PNPLA3 correlates with liver fat content BUT NOT with insulin sensitivity¹

- 2. PNPLA3 (Ile148 Met) impairs hepatic TG hydrolysis but does not associate with insulin resistance
- **3.** A similar dissociation between liver fat content and insulin sensitivity is also observed with the E167K variant in TM6SF2² and in familial hypobetalipopproteinemia³

...and cardiovascular diseases

PNPLA3 genotypes

100 patients with MetS and CC genotype (Gpe M) 100 patients with NAFLD and GG genotype (Gpe G) 100 controls with CC genotype

CIMT as primary endpoint

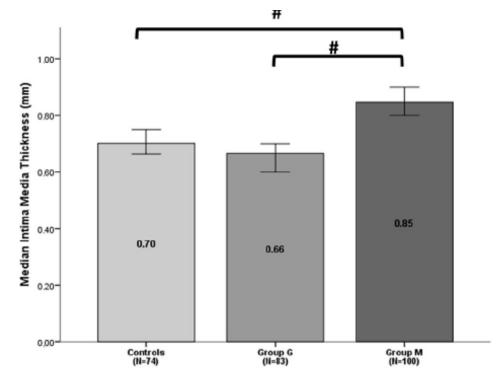
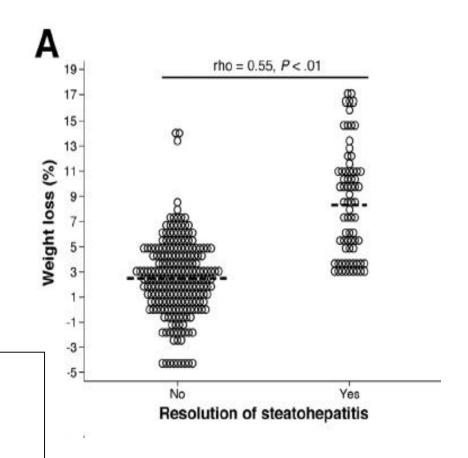


Fig. 1. Comparison of CIMT between study groups. (A) Median CIMTs for the three study status and steatosis severity reflected by the Hamaguchi score, General Lineal Model (G * adjusted p < 0.05 for age, sex, smoking status and HFF, General Lineal Model (GLM) tes resonance spectroscopy.

Di Costanzo A. et al. Atherosclerosis 2017; 257: 232-39.


AGENDA

- 1. EPIDEMIOLOGICAL DATA
- 2. PATHOPHYSIOLOGICAL DATA
- 3. GENETIC DATA
- 4. THERAPEUTIC DATA
- 5. CONCLUDING REMARKS


Life style changes improve both T2D and NAFLD

Intervention

♣750 kcal/day less than daily energy need64% carbohydrates, 22% fat (< 10% SFA), 14% ProtPhysical activity: 200 min walk /week

BARIATRIC SURGERY

362 patients who underwent bariatric surgery (gastric banding of RYGB)

Table 5. Effects of Bariatric Surgery on Histologic Parameters at 1 and 5 Years

				P value, paired t test			
Variables	Before surgery (n = 362)	1 Year (n = 267)	5 Years (n = 211)	Before vs 1 year	Before vs 5 years	1 Year vs 5 years	
Amount of steatosis, mean ± SD, (%)	37.4 ± 25.5	15.3 ± 19.8	16 ± 27.3	.00001	.00001	.5	
Severe steatosis, n (%)	106 (29)	15 (5.6)	18 (8.5)	.00001	.00001	.5	
NAS, mean ± SD	1.97 ± 1.33	1.07 ± 1.26	1 ± 1.33	.00001	.00001	.07	
NAS inflammation, mean ± SD	0.18 ± 0.41	0.196 ± 0.45	0.23 ± 0.45	.7	.1	.7	
NAS ballooning, mean ± SD	0.20 ± 0.47	0.12 ± 0.36	0.1 ± 0.33	.001	.001	.07	
Extent of fibrosis, mean ± SD	0.27 ± 0.55	0.41 ± 0.69	0.36 ± 0.59	.002	.001	.9	
Fibrosis score							
FO FO	280 (77.4)	181 (67.8)	147 (69.7)				
F1	67 (18.5)	69 (25.8)	55 (26)				
F2	13 (3.6)	10 (3.7)	6 (2.8)				
F3	2 (0.5)	7 (2.6)	2(1)				
F4	_	_	1 (0.5)				

NAS, nonalcoholic fatty liver disease score.

- → significant decrease of steatosis and ballooning
- → maximal effect at 1 year
- -> early improvement of insulin resistance (QUICKI) is the best predictor of the long-term outcome

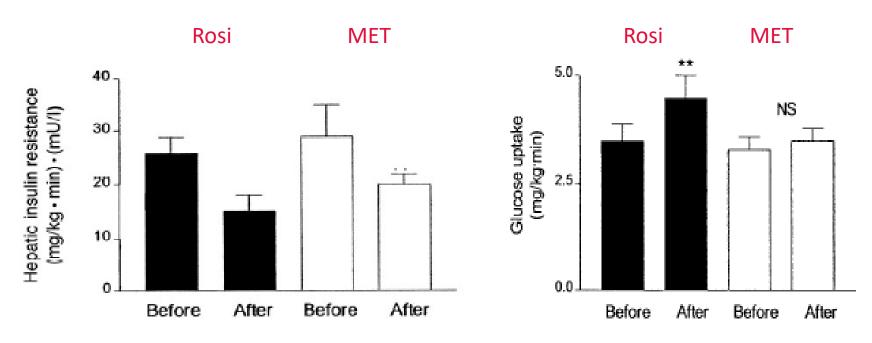
THE DISCREPANT EFFECT OF METFORMINE IN T2D & NASH

- Metformin is the first choice therapy in T2D regarding its hypoglycaemic efficacy and potential cardiovascular benefit (UKPDS 34)
- Metformin failed to demonstrate some clinical efficacy in NAFLD

				P Va	llue ^a
	Vitamin E (n = 50)	Metformin (n = 50)	Placebo (n = 47)	Vitamin E vs Placebo	Metformin vs Placebo
Fibrosis score					
No. (%) improved [95% CI]	18 (37) [23 to 52]	22 (44) [30 to 59]	19 (40) [26 to 56]	.71	.72
Mean change (95% CI)	-0.3 (-0.6 to 0.0)	-0.4 (-0.7 to -0.0)	-0.2 (-0.6 to 0.1)	.48	.60
Steatosis score					
No. (%) improved [95% CI]	27 (54) [39 to 68]	26 (52) [37 to 66]	19 (40) [26 to 56]	.18	.25
Mean change (95% CI)	-0.8 (-1.1 to -0.5)	-0.6 (-0.9 to -0.2)	-0.4 (-0.8 to -0.1)	.24	.50
Lobular inflammation score					
No. (%) improved [95% CI]	22 (44) [30 to 59]	23 (46) [32 to 61]	20 (43) [28 to 59]	.89	.73
Mean change (95% CI)	-0.4 (-0.6 to -0.2)	-0.3 (-0.5 to -0.0)	-0.3 (-0.6 to -0.1)	.14	.97
Ballooning degeneration score					
No. (%) improved [95% CI]	22 (44) [30 to 59]	22 (44) [30 to 59]	10 (21) [11 to 36]	.02	.02
Mean change (95% CI)	-0.5 (-0.8 to -0.3)	-0.3 (-0.6 to -0.0)	0.1 (-0.2 to 0.3)	.006	.04
Change in NAFLD activity score, mean (95% CI)	−1.8 (−2.4 to −1.2)	-1.1 (-1.7 to -0.5)	-0.7 (-1.3 to -0.2)	.02	.25
Resolution of NASH, No. (%) [95% CI] ^b	25 (58) [42 to 73]	16 (41) [26 to 58]	11 (28) [15 to 45]	.006	.23

TONIC trial

obbreviations: Cl, confidence interval; NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis


P values derived from either χ² test for binary outcomes or analysis-of-covariance model regressing change from baseline to 96 weeks on treatment group and baseline value of the outcome for continuous outcomes.

^b Defined as number of patients with no NASH at week 96 among patients with borderline or definite NASH at baseline. Excludes 7, 11, and 8 patients with no NASH at baseline in vitamin E, metformin, and placebo groups, respectively.

DIFFERENCES BETWEEN METFORMIN AND GLITAZONES MECHANISMS OF ACTION

Double-blind, randomized study in 20 drug-naïve T2DM patients, comparing metformin, 2g/j and Rosiglitazone 8g/j for 16 weeks

Hyperinsulinemic-Euglycemic clamps

Meta-analysis: insulin sensitizers for the treatment of non-alcoholic steatohepatitis

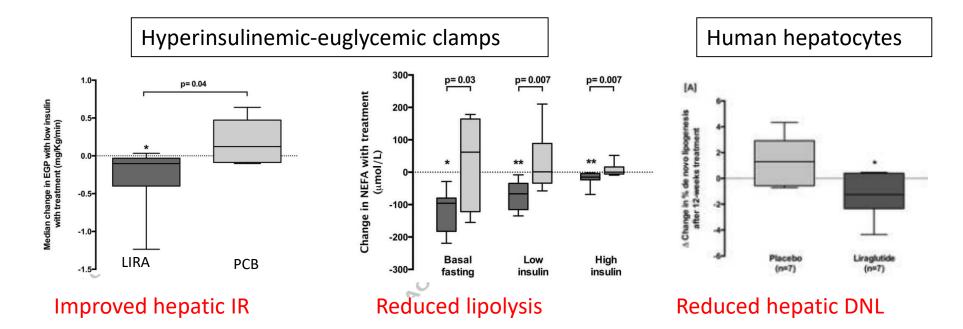
M. O. Rakoski*, A. G. Singal*, M. A. M. Rogers[†] & H. Conjeevaram*

Table 2 | Summary of effect sizes (weighted mean difference) for all insulin sensitizers, glitazones and metformin compared with controls

	parca mai con	0.0								
		All insulin sensitizers			Glitazones			Metformin		
(Outcomes	WMD*	95% CI	<i>P</i> -value	WMD*	95% CI	P-value	WMD*	95% CI	P-value
F	Primary outcome: histological response									
	Steatosis	0.40	0.14, 0.65	0.003	0.57	0.36, 0.77	<0.001	-0.19	-0.69, 0.31	0.45
	Ballooning	0.16	-0.031, 0.35	0.10	0.36	0.24, 0.49	<0.001	-0.037	-0.19, 0.12	0.64
	Inflammation	0.17	-0.15, 0.48	0.29	0.29	-0.05, 0.63	0.09	-0.19	-0.55, 0.17	0.31
	Fibrosis	0.24	0.053, 0.42	0.011	0.21	-0.046, 0.46	0.11	0.22	-0.37, 0.81	0.46
Secondary outcome: biochemical and anthropometric response										
	ALT	11.9	2.4, 21.5	0.004	16.4	7.70, 25.0	<0.001	13.6	-2.7, 29.9	0.10
	BMI	-1.23	-1.61, -0.85	<0.001	-0.90	-1.59, -0.22	0.010	0.75	-0.97, 2.48	0.39

WMD, weighted mean difference; CI, confidence interval; DM, diabetes mellitus; ALT, alanine aminotransferase; BMI, body mass index.

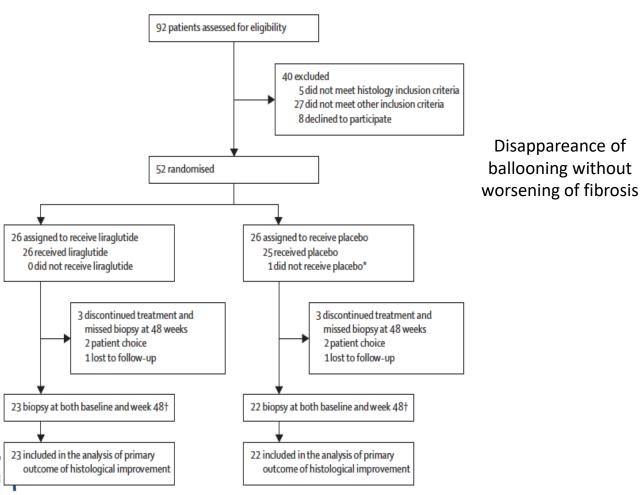
^{*} WMD: a positive WMD indicates greater improvement in the treatment group compared with controls.


GLP-1 R agonists and liver steatosis: molecular mechanisms

• It is unclear whether or not GLP-1 R is expressed in hepatocytes

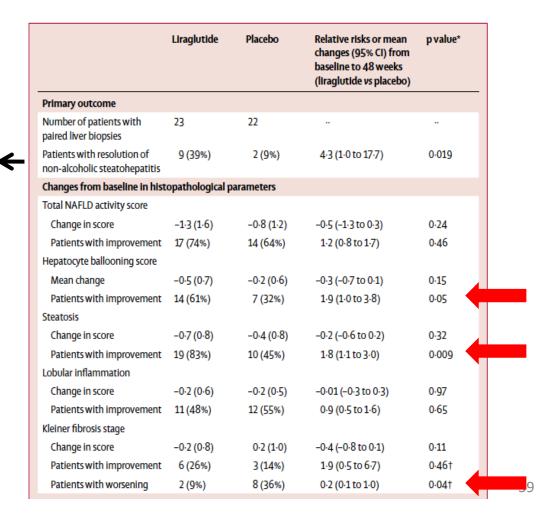
Samson SL et al. J Diabetes Complic 2013; 27: 401-406

- GLP-1 R agonists can improve steatosis in an indirect manner through body weight loss
- Pilot mechanistic study with liraglutide 1.8 mg/d (n=7) or PCB (n=7) in patients with liver biopsy-proven NASH


Armastrong ME et al. J Hepatol 2016; 64: 399-408

Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study

Matthew James Armstrong, Piers Gaunt, Guruprasad P Aithal, Darren Barton, Diana Hull, Richard Parker, Jonathan M Hazlehurst, Kathy Guo, LEAN trial team*, George Abouda, Mark A Aldersley, Deborah Stocken, Stephen C Gough, Jeremy W Tomlinson, Rachel M Brown, Stefan G Hübscher, Philip N Newsome


Lancet 2016: 387: 679-90

≅ 35% of patients with T2DM

du thorax

Disappareance of ballooning without

Table 1 Medical treat	ment modalities	in NASH and T2D					
Intervention	Metformin	GLP-1	Thiazolidinediones	SGLT2 inhibitors	DPP4 inhibitors	Sulphonylurea	Insulin
Glucose lowering efficacy	++	++	+ or ++	+ or ++	+	+++	+++
Hypoglycaemia risk	Low	Low	Low	Low	Low	High	High
Effect on body weight	Loss	Loss	Gain	Loss	Neutral	Gain	Gain
Adverse effects	Gastrointestinal	Gastrointestinal	OedemaHeart failureFractures	Genitourinary infectionsDehydration	Pancreatic	Hypoglycaemia	Hypoglycaemia
Liver-specific effects							
Steatosis	NE	↓	+	?	?	NE	↑
Inflammation	NE	↓	1	?	?	?	?
Hepatocyte ballooning	NE	↓	1	?	?	?	?
Fibrosis	NE	NE	?	?	?	?	?
RCTs showing effectiveness in NAFLD	NE	Liraglutide	Pioglitazone (Rosiglitazone)	ND	ND	ND	ND
Direction of the Life	1.1 16 11 11	and the same of		DDF4 II	2010	4 CLD 4 L	100 200 4

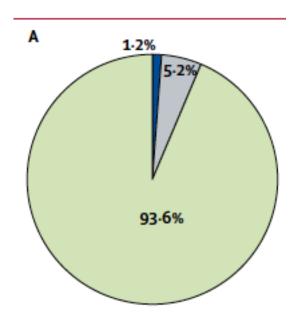
Diet and exercise should be advised for all patients, and continued throughout medical treatments. DP 4, dipeptidyl peptidase 4; GLP-1, glucagon-like peptide 1; ND, not done; NE, no effect; RCT, randomized controlled trial; SGLT2, sodium glucose co-transporter 2.

AGENDA

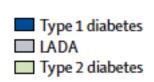
- 1. EPIDEMIOLOGICAL DATA
- 2. PATHOPHYSIOLOGICAL DATA
- GENETIC DATA
- 4. THERAPEUTIC DATA
- **5. CONCLUDING REMARKS**

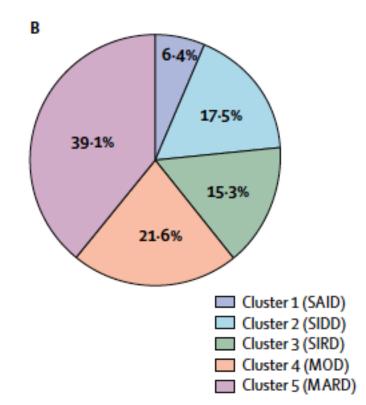
TAKE HOME MESSAGES

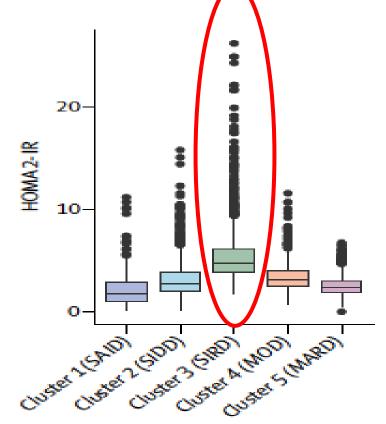
- NAFLD is the « liver » feature of Metabolic syndrome (Met-S)
- **Selective hepatic insulin resistance** is the main underlying molecular common driver for both NAFLD and Met-S
- Interventions should target insulin resistance (« insulin sensitizers »)
- A tight collaboration between diabetologists & hepatologists is required
 - Hepatologists for screening Met-S and T2D in patients with NAFLD
 - Diabetologists for screening NAFLD and NASH in patients with T2D
- Genetics tell us that we need **« Precision Medicine »** to stratify NAFLD (rs738409 PNPLA3 vs other) and optimize therapeutic management



Novel subgroups of adult-onset diabetes and their association \Rightarrow $\ \ \blacksquare$ with outcomes: a data-driven cluster analysis of six variables

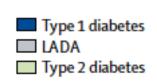


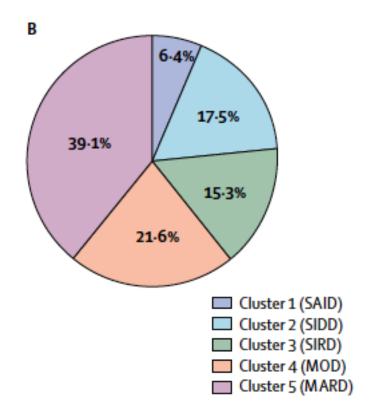

Emma Ahlqvist, Petter Storm, Annemari Käräjämäki*, Mats Martinell*, Mozhqan Dorkhan, Annelie Carlsson, Petter Vikman, Rashmi B Prasad, Dina Mansour Aly, Peter Almqren, Ylva Wessman, Nael Shaat, Peter Spéqel, Hindrik Mulder, Eero Lindholm, Olle Melander, Ola Hansson, Ulf Malmqvist, Åke Lernmark, Kaj Lahti, Tom Forsén, Tiinamaija Tuomi, Anders H Rosengren, Leif Groop


Cluster-analysis with 6 variables: GAD antibodies, age at diagnosis, BMI, HbA1C, HOMA-IR & HOMA-B

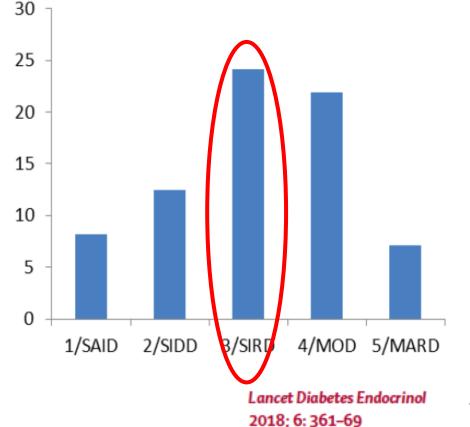
du thorax

Novel subgroups of adult-onset diabetes and their association \Rightarrow $\ \ \blacksquare$ with outcomes: a data-driven cluster analysis of six variables




Emma Ahlqvist, Petter Storm, Annemari Käräjämäki*, Mats Martinell*, Mozhqan Dorkhan, Annelie Carlsson, Petter Vikman, Rashmi B Prasad, Dina Mansour Aly, Peter Almqren, Ylva Wessman, Nael Shaat, Peter Spéqel, Hindrik Mulder, Eero Lindholm, Olle Melander, Ola Hansson, Ulf Malmqvist, Åke Lernmark, Kaj Lahti, Tom Forsén, Tiinamaija Tuomi, Anders H Rosengren, Leif Groop

Cluster-analysis with 6 variables: GAD antibodies, age at diagnosis, BMI, HbA1C, HOMA-IR & HOMA-B


Α 1.2% 93.6%

du thorax

Prevalence of NAFLD in ANDIS estimated from **ALT** measurements

THANK YOU FOR YOUR ATTENTION

July 5 & 6, 2018 Institut Pasteur

Organized by

Veronica Miller

UC Berkeley School of Public Health, Washington DC, USA

Arun Sanyal

Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA

Lawrence Serfaty

Hôpital Hautepierre Hôpitaux Universitaires de Strasbourg, France

With the partnership of

