Molecular markers of disease progression in **NASH**

Professor Jean-François Dufour

Director University Clinic of Visceral Surgery and Medicine, Hepatology, University of Berne, Berne, Switzerland

b UNIVERSITÄT RERN

 $\boldsymbol{u}^{\scriptscriptstyle b}$

Universitätsklinik für Viszerale Chirurgie und Medizin

Disclosures

Speaking and teaching

Outline

Progression of NASH

Molecular markers for insulin resistance

Molecular markers for fibrosis

Intervention on molecular markers

Fibrosis predicts all-cause & liver related mortality

Fibrosis Progression - Regression

Meta-analysis of 11 studies with NAFLD paired biopsies NASH, n = 116NAFL, n = 133Follow-up, 6 years

EASL LiverTree Adams

Singh et al., Clin Gastroenterol Hepatol, 2015

Fibrosis Progression - Regression

Fibrosis Progressors:

More to gain > 5kg (55% vs. 24% p=0.02) Greater increase in waist circumference (+4.0 cm vs. -3.3 cm P = 0.001)

Higher HOMA-IR on follow-up (5.2. vs. 2.9 *P* = 0.04) Diabetes more likely at follow-up (OR 6.2 95%Cl 1.9-20)

Fibrosis Regressors

Greater reduction in HbA1c (-1.9 vs. 0.3 P = 0.02)

McPherson et *al.* J Hepatol 2015 Hamaguchi et *al.* Diabetes Care 2010 Wong et *al.* Gut 2010 Ekstedt et *al.* Hepatology 2006

Outline

Progression of NASH

Molecular markers for insulin resistance

Molecular markers for fibrosis

Intervention on molecular markers

Molecular markers for insulin resistance

265 plasma metabolites, 20 insulin-sensitive and 20 insulin-resistant subjects with NAFL

Pattern of 7 metabolites with a significant discriminating power

Molecular markers for insulin resistance

Molecular markers for insulin resistance

Outline

Progression of NASH

Molecular markers for insulin resistance

Molecular markers for fibrosis

Intervention on molecular markers

Genetic Markers for fibrosis (not exhaustive)

Adapted from Anstee et al. Gastroenterology 2016 & Eslam et al. J Hepatol 2017

Truncated HSD17B13

Heterozygosity alpha1 antitrypsine Pi*Z

Risk of developing cirrhosis in 660 patients with biopsy proven NAFLD

F4. vs. F0

Adjusted for gender, age, BMI and diabetes

Strnad et al. GUT 2018

Epigenetic Markers for fibrosis

PPARy CpG1

PPARy CpG2

(3-4)

Increased circulating levels of miRNAs

Adapted from Eslam and Schuppan J Hepatol 2018

Molecular markers for fibrosis

	Cheap and reproducible	Sensitivity to exclude F≥3	Specificity to diagnose F≥3	Influenced by age	Allows predict clinical outcome
NAFLD fibrosis score	Yes	High	Modest	Yes	Yes
FIB-4	Yes	High	Modest	Yes	Yes
BARD score	Yes	High	Low	Unknown	Yes
APRI	Yes	High	Low	Unknow	Yes
Hepatoscore	Yes	High	Modest	Unknown	Yes

Collagen Pro C3

- In fibrogenesis; Type III collagen synthesis is upregulated
- Pro-C3 is a neo-epitope marker reflecting true type III collagen formation
- It is released by ADAMTS2 during type III collagen maturation

Specific N-Proteases (ADAMTS2/Procollage n 1 N-Proteinase

Molecular markers for fibrosis

AA profile of n = 44 subjects with NAFLD without diabetes and who had a liver biopsy

Glutamate-Serine-Glycine (GSG) index : glutamate/[serine + glycine]

Outline

Progression of NASH

Molecular markers for insulin resistance

Molecular markers for fibrosis

Molecular markers for intervention

Non-invasive diagnosis: Metabolomics

Non-invasive diagnosis: Metabolomics

0

+15

Predict that in case of NASH Elevated blood levels of chondroitin and heparan sulphates

Serine deficiency

Identify

Phosphoserine phosphatase, Serine hydroxymethyltransferase 1 Branched chain amino-acid transaminase 1 as potential therapeutic targets

Non-targeted Metabolomics Profiling

Metabolite intervention in NASH

Mardinoglu et al. Molecular System Biology 2017

Human metabolic screening experiment

Discovery set (n = 33 liver biopsies)

Metabolic screening (252 metabolites)

6 metabolites passing screening threshold

Replication set (*n* **= 66 liver biopsies)**

Nicotinamide riboside

Supplementation with NR-SER-NAC

Mardinoglu et al. Molecular System Biology 2017

Metabolite intervention in NASH

Conclusions

Insulin resistance is associated with changes in circulating levels of AAs

Several molecular markers for fibrosis

Supplementation of specific metabolites may have therapeutic potential in NASH

