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Outline

▪ Why we need something more to assess diagnostics

– Pragmatism and benefit:risk apply here too

▪ BED-FRAME to address this need

▪ Example
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Suppose there is a choice between 2 diagnostic tests: 

one has higher sensitivity and the other has higher specificity.

Which test should be selected to optimize clinical outcomes?
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I can say 2 things about the methods I learned in college for 

the analysis of diagnostic tests.

1. They closely reflect the methods used in the literature.

2. They are useless for informing clinical decision-making.
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Sensitivity and Specificity

▪ Sensitivity and specificity are foundations for diagnostic evaluation

▪ Arbitrary goals are typically defined 

– E.g., sensitivity and specificity must be above 90%

▪ However…
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Important Consideration:
Integrating Sensitivity and Specificity

▪ If sensitivity is very high, then one may be willing to sacrifice specificity 

to a degree

▪ If sensitivity was marginal, then … less willing to sacrifice

▪ Consider 

– A test with a sensitivity and specificity of 99% and 89%, 

respectively, would not satisfy the arbitrary 90% goals

– A test with a sensitivity and specificity of 91% would satisfy the goal

– However, if a false negative is much more important than a false 

positive, then the first test may have more utility than the second

▪ Need to integrate sensitivity and specificity while considering the relative 

importance of false negative and false positive results
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Important Consideration:
Relative Importance of Errors

Not all errors are equivalent.
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Non-invasive Tests for NASH 

▪ Likely a panel of markers e.g., radiology and serum

▪ Consequence of errors depend on the stage of disease.

▪ Earlier stages: no treatment and unlikely for a while

– False positive: patient advised to adapt lifestyle and is 

monitored for disease progression

– False negative: patient may progress to advanced fibrosis 

without monitoring

▪ Advanced fibrosis

– False positive: patient may undergo unnecessary 

diagnostics and maybe put on contra-indicated treatment 

putting them at risk for harmful toxicity and cost. 

– False negative: patient could progress to compensated 

cirrhosis and the decompensated cirrhosis without being 

monitored and treated 
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Important Consideration:
Prevalence

▪ Consider application of a test with sensitivity = 90% and specificity = 

80%, to 1000 patients when the prevalence is 20%

▪ Expected diagnostic yield

– 20 false positives

– 160 false negatives

▪ If the prevalence was instead 2%, then the expected yield is:

– 2 false positives

– 196 false negatives

▪ Prevalence must be carefully incorporated
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Prevalence and Relative Importance are Dynamic

▪ Prevalence and relative importance are dynamic, varying 

temporally and geographically

▪ E.g., changes in COVID infection prevalence over time or 

geographic diversity of prevalence

▪ The relative importance of false negative vs. false positive errors 

can vary depending on e.g., 

– The availability and costs of effective interventions

– Ability to manage toxicities associated with the interventions

– Disease virulence

– Contagiousness
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Towards Improved Clinical Decision-making

▪ The “real world” consequences of diagnostics application can be 

evaluated using the expected diagnostic yield

▪ Diagnostic yield: the distribution of true positives, true negatives, false 

positives and false negatives 

– Determined by sensitivity, specificity, and prevalence

▪ The desirability of the resulting diagnostic yield is affected by the relative 

importance of false negative vs. false positive errors

▪ Can we make diagnostic studies more pragmatic by comprehensively 

considering this information?

▪ Yes …
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Keys to Improved Decision-making

▪ Evaluations with greater pragmatism based on diagnostic yield

– Consider sensitivity and specificity simultaneously

– Incorporate prevalence

– Incorporate relative importance of different errors

– Analyze overall utility in light of the dynamic nature of the 

prevalence and relative importance
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Welcome to Nerd Nirvana
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Weighted Accuracy (WA) and Average Weighted Accuracy (AWA)

▪ WA = [rp(specificity) + (1-p)(sensitivity)] / (1/(rp +1 – p))

– p = prevalence 

– r = the relative importance of false positive vs. false negative

– Ranges from 0-100% with higher percentages better

▪ AWA: Averaged WA on a relevant range of prevalence p ∈ [𝑎, 𝑏].
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1
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Example

▪ Evaluation of two platforms (PCR/ESI-MS and MB) for 

discriminating resistance vs. susceptibility to carbapenems

– Based on the absence / presence of 7 genetic targets

• OXA-23, -40, -58, NDM, KPC, VIM, and IMP 

▪ Reference standard: Minimal inhibitory concentration (MIC) 

– Smallest antibiotic concentration sufficient to inhibit bacterial 

growth when tested in vitro

▪ 200 strains (~50% susceptible to carbapenems)
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Genetic Target Identification by MIC Level
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Slide Rule Profile Plot:
Expected Diagnostic Yield as a Function of the Prevalence of Susceptibility
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Contours of the Difference in Weighted Accuracy as a 

Function of Relative Importance and Susceptibility Rate

Red favors MB; Green favors PCR/ESI-MS
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Contours of the Difference in Weighted Accuracy as a 

Function of Relative Importance and Susceptibility Rate

▪ Consider Point A

– R =100% [i.e., errors 

are equivalent)

– Susceptibility rate=60%

– ~ 3% higher weighted 

accuracy for MB 

Red favors MB; Green favors PCR/ESI-MS
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Contours of the Difference in Weighted Accuracy as a 

Function of Relative Importance and Susceptibility Rate

▪ Consider Point B

– R=50% (i.e., FR is half 

as important as FS)

– Susceptibility rate=80%

– ~ 4% higher weighted 

accuracy for MB. 

Red favors MB; Green favors PCR/ESI-MS



All Rights Reserved, Duke Medicine 2007

Contours of the Difference in Weighted Accuracy as a 

Function of Relative Importance and Susceptibility Rate

▪ Consider Point C

– R=50%

– Susceptibility rate=30% 

(i.e., resistance 

outbreak) 

– ~ 4% higher weighted 

accuracy for PCR/ESI-

MS vs MB. 

Red favors MB; Green favors PCR/ESI-MS
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BED-FRAME Analyses

▪ Forest plot summary of point and confidence interval estimates for sensitivity, 
specificity, and the between diagnostic differences in sensitivity and specificity

▪ Plots of the estimated positive predictive values as a function of prevalence with 
confidence bands

▪ Plots of the differences in estimated predictive values as a function of prevalence with 
confidence bands 

▪ Slide rule profile plot of the expected diagnostic yield as a function of the prevalence

▪ Estimated between diagnostic difference in FN and TN as a function of prevalence

▪ The estimated numbers needed to test (NNT)

▪ A plot of WA as a function of relative importance

▪ A contour plot of the between diagnostic difference in WA under combinations of 
prevalence and relative importance

▪ Plots of AWA and the between diagnostic difference in AWA, as a function of relative 
importance

▪ A plot of AWA for random tests as a function of probability ranging from 0 to 1
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BED-FRAME Analyses
Free Online Tool in Development 
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Intention-to-Diagnose (ITD)

▪ Analog of ITT in interventional studies

▪ Application carries similar protections, i.e., valid statistical 

inference (e.g., error control during hypothesis testing and correct 

coverage probabilities for confidence interval estimates of 

sensitivity or specificity) and clear generalizability

▪ Provides a realistic and unbiased answer to the most relevant 

question for diagnostic tests - that is, how they might perform in 

clinical practice - by capturing the range of consequences 

associated with test implementation in an intended-use setting

▪ However, ITD is rarely recognized or applied
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Summary

▪ Greater pragmatism is needed in diagnostic studies too

– Connection to clinical practice

– Intention-to-diagnose

▪ Benefit:risk assessment in a structured and meaningful way is an 

important aspect of this

▪ BED-FRAME: a tool for pragmatic evaluation and comparison of 

diagnostic alternatives to aid in clinical decision making

– Free online application for analyses in development
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Summary

▪ Diagnostic yield can be used to evaluate diagnostic value 

▪ Sensitivity, specificity, prevalence and the relative importance of 

errors are important elements of value assessment

▪ Prevalence and the relative importance may vary temporally, 

geographically, and culturally

– Evaluate the utility of a diagnostic as these factors vary 

▪ Consider studies to inform the prevalence and the relative 

importance of diagnostic errors
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Significant Contributors (p<0.001)

▪ Gene Pennello

▪ Shanshan Zhang

▪ Toshi Hamasaki 

▪ The Antibacterial Resistance Leadership Group
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I have no doubt that you will enthusiastically applaud now … 

because you are so relieved that it is over.

Thank you.
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