Monitoring Toxicity of ARVs

Dr Mary R Couper
Quality Assurance and Safety of Medicines
WHO, Geneva

- Why Pharmacovigilance
- Methods of monitoring
- WHO International Programme for Adverse Drug Reaction reporting

Why is pharmacovigilance necessary?

- Efficacy is the major focus of drug clinical trials; short duration of clinical trials and risk of long term adverse effects
- Early detection of unknown safety problems
- Identifying risk factors
- Ultimately leading to rational use of drugs

Why pharmacovigilance in resourcelimited settings?

- Medicine regulatory systems inadequate
- Absence of local product stewardship by the pharmaceutical companies.
- Local health care delivery systems do not have the necessary training, knowledge or expertise.

Why pharmacovigilance necessary for antiretrovirals in resource —limited settings?

- Available data on drug toxicity are mainly from industrialized countries - different clinical and operational context of developing countries
- Drug toxicity is common with antiretrovirals causing switching specific drugs
- Co-morbidity: TB and other infections,
- Use of alternative therapies, medicine interactions, socio-cultural-educational background is different; conditions such as malnutrition.

Prescription

Dr A. Who

31 December 2005

Re: Mr Joseph Bloggs

R/

- 1) abacavir + lamivudine + zidovudine 1 BD
- 2) atenolol 100 mg/d
- 3) acetylsalicylic acid 150mg/d
- 4) simvastatin 10 mg/d
- 5) bezafibrate 200 mg/d
- 6) metformin 500 mg/d
- 7) fluoxetine 50 mg/d
- 8) sildenafil

What?

- All ARVs in use in the country
- All ARVs used in HIV/AIDS programmes
- New combination products
- Other medicines used in treatment of opportunistic infections
- Medicines used in treatment of adverse events

Methods of Monitoring

- Spontaneous reporting
- Cohort event monitoring
- Special Phase IV studies for specific toxicities
- Pregnancy registers
- A special study on patients with TB coinfected with HIV
- Special studies for paediatric populations

Spontaneous ADR reporting

Spontaneous reporting depends on encouraging health workers to report **suspicions** of ADRs

Spontaneous reporting can play a major role in identifying signals after a drug is marketed

Spontaneopus reports should be sent to national PV centre and then sent to global database

Spontaneous ADR reporting advantages

- large population
- all medicines
- hospital and out-patient care
- long perspective
- patient analyses possible
- non-interventional
- low cost

Spontaneous ADR reporting disadvantages

- under-reporting
- difficult to detect
 - delayed reactions
 - reactions with high background
 - incidence
- number of exposed unknown

Partners in reporting

- Minister of health
- Regulatory authority
- National pharmacovigilance centre
- Professional organizations
- Health professionals who are to participate
- Pharmaceutical companies
- Patients
- Patient support groups where these exist
- General public.

What to report?

- Adverse reactions
 - Type A
 - Type B
- Lack of effect
 - counterfeiting
 - resistance
 - interaction
- Quality problem http://mednet3.who.int/prequal/
- Dependence and abuse

What to report?

- Allopathic medicines
 - Prescription
 - OTC
- Traditional medicines

Special Phase IV studies for specific toxicities

- Abacavir and nevirapine hypersensitivity reactions (important to know what is the real prevalence of this problem in developing countries)
- Tenofovir nephrotoxicity risk, particularly in Africans, which can be more prone to this kind of toxicity
- Tenofovir bone toxicity, which should be particularly evaluated in children under 5 years of age.

Special Phase IV studies for specific toxicities (cont.)

- Prevalence of stavudine associated neuropathies (not restricted to peripheral forms).
- Prevalence of HIV-related lipodystrophy in patients using stavudine containing regimens.
- Nevirapine and saquinavir/r associated hepatotoxicity particularly when used concomitantly with TB drugs and also in presence of Hep B co-infection, which is probably high in Asian and African context but not well evaluated.

Special Phase IV studies for specific toxicities (cont.)

- Zidovudine associated anaemia, particularly in high prevalence malaria regions.
- Occurrence of birth defects in patients which have used efavirenz during 1st trimester of pregnancy.
- Occurrence of didanosine-related pancreatitis and its association with the use of other drugs.
- Problems with lopinavir/r or ritonavir capsules (related to ambient temperature in some African settings).
- Occurrence of lactic acidosis and other severe acute metabolic toxicity associated to NRTIs, particularly with stavudine and didanosine.

Proposed study

An evaluation of the impact of early initiation of HAART on TB treatment outcomes for TB patients co-infected with HIV

Trial Drugs

TB

All patients will receive anti-TB chemotherapy as recommended by the WHO treatment GL (4FDC/2FDC)

<u>HIV</u>

All patients will receive HAART as currently recommended by the WHO treatment GL: 2FDC Combivir (zidovudine + lamivudine)+efavirenz

Outcome measure: Primary

The primary outcome measure is the composite endpoint of treatment failure or death evaluated at 6 months after initiation of short course chemotherapy.

Outcome measure: Secondary

- TB relapse in the 24 months after initiation of short course chemotherapy.
- A composite endpoint of treatment failure, relapse and death evaluated at 24 months after TB treatment initiation.
- Safety parameters. These will include biochemical and haematological parameters and all Adverse events (AE) and serious adverse events (SAE) occurring during treatment.
- Time to Relapse / treatment failure /death up to 24 months after initiation of anti-TB treatment.
- All occurrences of other opportunistic infections (as defined according to WHO staging system) and any event which alters clinical staging (e.g. extrapulmonary TB).
 - Impact of early HAART on all-cause mortality
- Early response rate as measured by sputum smear conversion at the end of the intensive phase of treatment.
- Impact of early HAART on Immunological reconstitution (assessed through CD4 count measurements) of TB co-infected patients

WHO structure at headquarters

Director-General

Dr Jong-wook Lee

Representatives of the Director-General

Polio Eradication

Health Action in Crises

HIV/AIDS, TB and Malaria

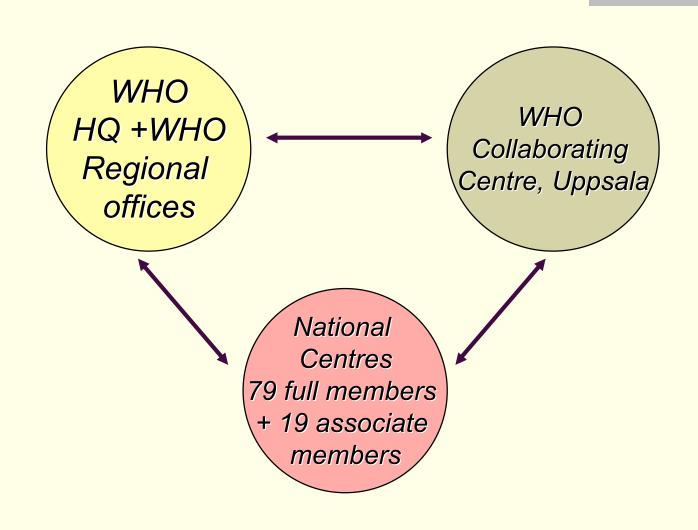
Sustainable
Development and
Healthy
Environments

Evidence and Information for Policy

Communicable Diseases

Health Technology and Pharmaceuticals

External Relations and Governing Bodies


Link to Regional Offices

Noncommunicable
Diseases and
Mental Health

Family and Community Health

General Management

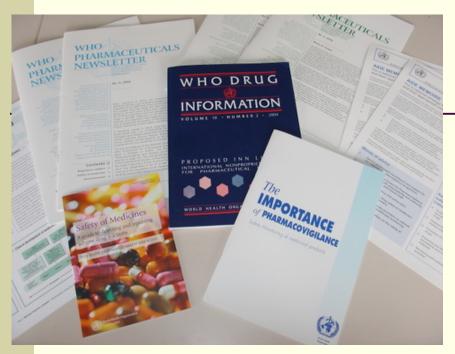
WHO Programme for International Drug Monitoring

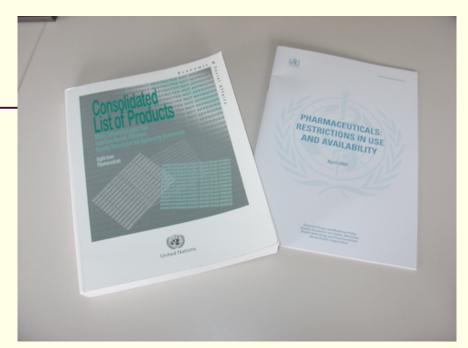
Tools for promoting safety of medicines

Publications

- Pharma Newsletter
- •WHO Drug Info
- Drug Alerts
- Restricted List
- •Web-page
- Annual reports
- UMC publications

Committees


- ACSoMP
- Signal Review Panel
- Various ad hoc
- Annual Meetings of
- National Centres


Guidelines & Policy

- •Safety of medicines series 4+1
- •PPP on PV
- Aide Memoire
- •UMC guidelines

Others

- •Vigimed electronic discussion group
- Data-mining tools
- Global database

Training courses

- 2004 Pretoria, South Africa
- 2005 Uppsala, Sweden
- 2006 Caribbean