Imperial College
 London

Multiple interventions to control the spread of HIV: Synergistic, additive or redundant?

Peter J White \& Geoff P Garnett Imperial College London, UK
www1.imperial.ac.uk/medicine/people/p.white

Background

- HIV prevention essential if treatment is to be afforded.
- No single intervention is sufficient to control transmission.
- Limited resources \rightarrow maximise efficiency.
- How to combine interventions to do this?
- i.e. how to avoid redundancy?
- (Potential antagonism not addressed here.)
www1.imperial.ac.uk/medicine/people/p.white

Models of infectious disease transmission

- We are interested in the population-level effect of processes occurring at the individual level.
- An uninfected individual's risk of becoming infected per unit time depends upon the prevalence of infectious individuals (a population-level characteristic)
- (and rate of contact between individuals, infectiousness of infected individuals, etc)
- So transmission of infection in a population is a dynamic process requires dynamic models for prediction \& analysis of putative programmes.
www1.imperial.ac.uk/medicine/people/p.white

Basic reproductive number, R_{0}

- Measures how effectively infection spreads:
- higher R_{0} - harder to control (and higher endemic prevalence).
- R_{0} is the average number of secondary infections occurring from a single infected individual in a totally susceptible population.
- An epidemic requires that transmission from an infected individual causes on average more than one new infection (i.e. $R_{0}>1$) so amplification occurs.
- Interventions aim to reduce $R_{0}<1$.
www1.imperial.ac.uk/medicine/people/p.white

Redundancy in effect on R_{0}

- Combined interventions will have a less-thanadditive effect on R_{0}
- ... even if they act independently on different proximate determinants.
- Example:
- Intervention 1 alone reduces R_{0} by 20\%
- Intervention 2 alone reduces R_{0} by 30%
- Combined they reduce R_{0} by 44%, not 50%
- i.e. $R_{0}(1-0.2)(1-0.3)=R_{0}(0.8)(0.7)=0.56 R_{0}$
www1.imperial.ac.uk/medicine/people/p.white

R_{0} \& endemic prevalence

- But, R_{0} and endemic prevalence are non-linearly related
- i.e. proportionate endemic prevalence $\downarrow \neq$ proportionate $R_{0} \downarrow$

Heterogeneity in HIV risk

- Models and interventions need to take account of heterogeneous risks of HIV acquisition and transmission.

Conclusions

- Combined interventions have a less-than-additive effect in $\downarrow R_{0}$.
- But $R_{0} \rightarrow$ endemic prevalence non-linear: combined interventions are almost never additive, but synergistic or redundant.
- Generally, interventions should be combined, not selected between - 'and' not 'or'.
- Interventions which are insufficiently effective singly may be worth implementing together, due to synergy.
- To maximise efficiency, target each intervention effectively - i.e. at the appropriate risk group.
www1.imperial.ac.uk/medicine/people/p.white

