The Development of Voretigene Neparvovec, a Gene Therapy for Biallelic *RPE65* Mutation Associated Inherited Retinal Disease: A Case Study for Retinal Gene Therapy

> Daniel C Chung, DO, MA Chief Medical Officer SparingVision

Biallelic RPE65 mutation-associated retinal dystrophy

- Rare autosomal recessive disease with many clinical descriptors: Leber congenital amaurosis (LCA2), retinitis pigmentosa (RP20)
 - About 8-16% cases of LCA, 1% of RP¹
- Early onset retinal degeneration; nyctalopia an early symptom
- Some vision early in life, significant impairment by second decade
- Genetically engineered mice and naturally occurring dog models of disease

Nystagmus

¹Based on incidence/prevalence from Genetics Home Reference and commissioned market research. Image courtesy of Jean Bennett, MD, PhD. Russell S, et al. Lancet 2017; 390(10097):849-60

Mechanism of Action of RPE65 Gene Therapy

PR, photoreceptor; RPE, retinal pigment epithelium;

Wright AF, et al. Nat Rev Genet 2010; 11(4):273-84.

Voretigene Neparvovec-rzyl: Development History

1. Marlhens et al. Nat Genet 1997; 17:139-141. 2. Gu et al. Nat Genet 1997; 17:194-197. 3. Narfström et al. Invest Ophthalmol Vis Sci 2003; 44:1663-1672. 4. Data on File. Spark Therapeutics, Inc. Philadelphia, PA. 5. Jacobson et al. Human Gene Ther 2006; 17:845-858. 6. Maguire et al. Lancet 2009; 374:1597-1605. 7. Bennett et al. Lancet 2016; 388:661-72. 8. Maguire et al. Presentation at: American Academy of Ophthalmology Meeting 2015; November 14-17, 2015; Las Vegas, NV. 9. Russell et al. Presentation at: Retina Society 48th Annual Scientific Meeting; October 7-11, 2015; Paris, France. 10. Spark Therapeutics. http://ir.sparktx.com/news-release-details/spark-therapeutics-announces-new-positive-data-continuation. Accessed December 3, 2018. 11. Spark Therapeutics. http://ir.sparktx.com/news-release-details/european-commission-approves-spark-therapeutics-luxturnar. Accessed December 3, 2018.

Voretigene neparvovec-rzyl is an AAV2-hRPE65 vector developed for subretinal injection

https://commons.wikimedia.org/wiki/File:Adenoassociated_virus_serotype_AAV2.jpg http://webvision.med.utah.edu/book/part-i-foundations/ simple-anatomy-of-the-retina/ http://mmg-233-2014-genetics-genomics.wikia.com/wiki/File:Injection.jpg Bleb (~25-30% of retina)

Non-Clinical Studies in RPE65 Mutant Dogs

Restored ERG Response

Acland GM, et al. Presented at: Association for Research in Vision and Ophthalmology Annual Meeting, 2002.

Optimization of Vector Creating Voretigene Neparvovec-rzyl

Optimized construct Kozak sequence

Optimized final formulation **Removed** empty capsids Added surfactant

mL : vector genomes per millility

Subretinal injection of voretigene neparvovec-rzyl

• Maguire AM, et al. N Engl J Med 2008; 358:2240-2248.

Phase 3 trial design: Multi-center, open-label, randomized controlled crossover design

ITT, intent-to-treat population; mITT, modified intent-to-treat population; MLMT, multi-luminance mobility test; vg, vector genome;

• Russell S, et al. Lancet 2017; 390(10097):849-60.

MLMT: Designed to detect changes in functional vision across a range of light levels

Light Levels	Examples		
1 lux	Moonless summer night; Indoor nightlight		
4 lux	Cloudless night with half moon; Parking lot at night		
10 lux	1 hour after sunset in city; Bus stop at night		
50 lux	Outdoor train station at night; Inside of lighted stairwel		
125 lux	30 minutes before sunrise; Interior of train / bus at night		
250 lux	Interior of elevator or office hallway		
400 lux	Office environment or food court		

Light meter: National Institute of Standards and Technology-calibrated,

Extech model #EA33 light meters used to provide examples and to set / verify specified light levels used for mobility testing

• Chung DC, et al. Clin Exp Ophthalmol 2018; 46(3):247-259.

Standardizing and Quantifying the MLMT

Testing rigor

• Chung DC, et al. Clin Exp Ophthalmol 2018; 46(3):247-259.

Grading rigor

Phase 3: Efficacy Endpoints and Results

Assessment	Measurement	Difference (95% CI) (Intervention- Control)	p value
Primary Endpoint			
MLMT performance	Bilateral, score change	1.6 (0.72, 2.41)	p = 0.0013
Secondary Endpoints			
FST testing	Averaged over both eyes, log10(cd.s/m ²)	-2.11 (-3.19, -1.04)	p = 0.0004
MLMT performance	Assigned first eye, score change	1.7 (0.89, 2.52)	p = 0.0005
Visual acuity	Averaged over both eyes, LogMAR (Holladay)	-0.16 (-0.41, 0.08)	p = 0.17
Additional Endpoint			
Viewalfield	Goldmann III4e sum total degrees, averaged over both eyes	378.7 (145.5, 612.0)	Nominal p = 0.0059
	Humphrey macula threshold, dB, averaged over both eyes	7.9 (3.5, 12.2)	Nominal p = 0.0005

• Russell S, et al. Lancet 2017; 390(10097):849-60.

Phase 3 Primary Endpoint: MLMT Improvement at Year 1

Russell S, et al. Lancet 2017; 390(10097):849-60.

Russell S, et al. Poster presented at: the Association for Research in Vision and Ophthalmology Annual Meeting; May 7-11, 2017; Baltimore, MD

Phase 3: Secondary endpoint (FST at Year 1) >100-fold improvement in white light sensitivity

- Russell S, et al. Lancet 2017; 390(10097):849-60.
- Russell S, et al. Poster presented at: the Association for Research in Vision and Ophthalmology Annual Meeting; May 7-11, 2017; Baltimore, MD

Control Intervention (N=9)

Prespecified Secondary Endpoint

Safety in Phase 3 Study

- Most frequently reported ocular treatment-emergent adverse events (≥10%) subjects) through 2-4 years after vector administration (Intervention and Control/Intervention population):
 - Increased intraocular pressure, 7 events in 5 (17%) subjects
 - Cataract, 10 events in 5 (17%) subjects
 - Retinal tear, 3 events in 3 (10%) subjects
 - Retinal deposits, 3 events in 3 (10%) subjects
- Ocular serious adverse events:
 - One subject in the Control/Intervention group
 - Loss of foveal function assessed as related to the administration procedure
 - One subject with retinal detachment 4 years post administration
- No deleterious immune responses occurred

Maguire AM, et al. Presentation at: The American Academy of Ophthalmology (AAO) Annual Meeting, Retina Subspecialty Day; November 10, 2017; New Orleans, LA.

Observations

- The first gene therapy for a genetic disease approved in the US
- The first gene therapy for an ocular disease approved
- Novel endpoint designed, validated and successfully used in pivotal trial
- Subretinal injections have a favorable safety profile
- AAV vectors have a favorable safety profile

