Lessons Learned from use of Real-World Data as External Controls

Bettina E Hansen Toronto Center for Liver Disease, UHN University of Toronto

Introduction

Use of real-world data/evidence^{1,2}

- Describe natural history of disease
- Identify risk factors
- Post-marketing surveillance
- Use external controls as comparator with treated patients
 - When unmet need

TORONTO CENTRE FOR

IVER DISEASE

- Difficult to perform RCTs
- Rare disease, paediatric population, long follow-up required

Examples treated patients without control arm

- Phase 2 study in rare paediatric disease
 - extended long term follow-up
 - all treated
- Phase 3 study of rare disease in adults
 - extended long term follow-up
 - all treated
 - placebo roll over after end phase 3
- External Control comparisons needed to understand if treatment improves event free survival

Is it feasible to use RWD as External Controls?

Is it feasible to use RWD as External Controls?

Stakeholders

- Pharma: trial data
- Independent researchers / scientists: RWD
- Regulatory: guarding the integrity

Collaboration: willingness, transparency and trust

- Data sharing
- Protocol
- Statistical Analysis Plan
- Analysis conducted independent from pharma Consider bringing in an independent partner (stats team)

RWD

Real World Data

High bar of standardization and quality

- Prospective/ Hybrid/ Retrospective
- REB, Data Sharing, e-CRF
- Completeness, accuracy, and consistency
- Standardized outcome assessment
- Adjudication criteria
- Quality control
- Audits

Examples Real World Data

• The GLOBAL PBC Study Group: studies on primary biliary cholangitis (PBC)

- PBC a rare chronic autoimmune liver disease, slowly progressive
- GALA: the global Alagille Alliance Study

 Alagille syndrome (ALGS): a rare, autosomal dominant disorder, characterized by high-γ-glutamyltransferase (GGT) cholestasis in children

Examples Real World Data

Hepatol Comms 2020; 4:387-398.

1. Lammers W, et al. AASLD 2014 (oral presentation); 2. Lammers et al., Gastroenterlogy 2014 TORONTO CENTRE FOR LIVER DISEASE

For Collaborative Research*

To compare time to clinical event in treated patients with external controls

Examples PBC and Alagille: Event defined as liver transplantation or death

Harmonize Design

Feasibility assessment

- Quality of data
- Outcome(s) use same definition
- Lab-values different labs, ULN, unit
- Patient factors
- Investigate completness
- Identification of confounders
- Power analysis: pre-specified effect size or min. clinical relevant effect size

Identification of Patients & Visits

Selection process

- Apply aligned inclusion/exclusion criteria
- Overlay sites / regions
- Overlay calendar time / SOC treatment

Example external controls selection Alagille

Alagille phase 2 trial: inclusion severe cholestasis, age 1-18yr RWD = External controls from GALA

Identification of patients and visits:

• A patient may be eligible with multiple visits

Index visit

Choice of Index Time = start of follow-up

- First visit
- Confirmatory visit
- Random visit(s)
- Last visit
- Other methods: multiple visits, ML-method

Example external controls selection PBC

PBC – phase 3 trial: inclusion non-response to SOC treatment External controls from GLOBAL PBC

Step-wise selection procedure of patients/visits:

TORONTO CENTRE FOR

VER DISEASE

- Identification of patients and visits: 1391 patients identified with a mean of 4.8 eligible visits pp
- Selection of index time = start of follow-up avoid immortal time bias

Selection of index time

Selection of index time

Immortal time bias – too frail for inclusion?

Balanced design using weights

TORONTO CENTRE FOR

Assessment of balance

- pre-specified check and tests
- Estimate weights
 - Propensity scores
 - IPTW
 - ATT weights

Harmonize Design

Feasibility assessment

- Define outcome, confounders
- Quality of Lab-values, patient and disease factors, missingness
- Power analysis

Selection

- Apply aligned inclusion/exclusion criteria
- Overlay sites / regions / calendar time

Index Time

• First visit, confirmatory visit, random visit(s), last visit, other methods

Assessment of balance

- pre-specified check and test
- weights: propensity scores, IPTW, ATT, ...

TORONTO CENTRE FOR

IVER DISEASE

Analysis of time to event

Rx arm

• Check for informative censoring

Composite endpoint

 Characterize type of events over time in both Rx arm and RWD-selection

Analysis of endpoint

- Kaplan-Meier and Cox regression methods
- Crude effect
- Weighted
- Adjusted for confounders

Sensitivity analyses

- Range of selection of index time
- Pruning of time to avoid immortal time bias

Subgroup analysis

- Concurrent calendar time
- Same region/ sites/or different sites

Firewall off un-blinded for outcome

TORONTO CENTRE

VER DISEASE

Lessons learned and discussion points

Pros +

- Enthusiasm for collaboration is huge
- Open for ideas and improvement of methodology
- Improvement of understanding effect size through multiple sensitivity and subgroup analysis
- Validate findings with second RWD

Cons -

- Challenge to asses quality
- No safety data
- Immortal time bias
- Challenge to get all right legally, ethical
- Publication and stakeholders

Is it feasible to use RWD as External Controls?

Is it feasible to use RWD as External Controls?

A strong need to create easier pathways for collaboration

