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Statistical challenges with RWD

N iod/ N domized/
Randomized/interventional inter ional i ional
Traditional randomized trial, Trials in clinical practice settings Observational
using elements of RWD 'with pragmatic elements) studies
RWD to assess Selected outcomes RCT using electronic case Single-arm study Observational cohort
enrollment criteria identified using port forms or EHR or claims with external study

& trial feasibility EHR/claims data, etc. data (or combination) control arm

RWD to support Mobile technology Case-control study
site selection used to capture
supportive endpoints

L Increasing reliance on RWD

Courtesy of "FDA Real-World Evidence Program" Webinar by John Concato on 4 August 2021
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Ne ized/

N d7
Randomized/interventional inter ional
Traditional randomized trial, frials in clinical practice settings
using elements of RWD lith pragmatic elements)
RWD to assess Selected outcomes using electronic case Single-arm study
enrollment criteria identified using with external
& trial feasibility EHR/claims data, etc. jata (or combination) control arm
RWD to support Mobile technology
site selection used to capture
supportive endpoints
RWD Challenges

0 Selection bias

Q Intercurrent events

Q Informative missingness

QO Treatment by indication

Q High dimensional covariates

0O Outcome measurement error

0 Statistical model misspecification

0 Differences between external
controls and single trial arm RCT

Targeted Learning
path supports regulatory
decision making

Observational
studies

Observational cohort
study

Case-control study




The roadmap for learning from data
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What is the experiment that generated the data?
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What is the experiment that generated the data?
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What is known about stochastic relations of the
observed variables?
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What happens when the statistical model is
misspecified and does not contain the DGP?
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Step 3a: What is the target causal estimand that
we aim to identify from the data?
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Step 3b: What is the target statistical estimand
that we will learn from the data?
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How should we estimate the target estimand?
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Targeted Maximum Likelihood Estimation (TMLE)
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TMLE Step 1: Super learner

LIBRARY COMPETITION WINNER

Cross-validated
performance of
learners + ensembles

Linear model S 7 x
BART 2
Random Forest 3
Neural Lasso 4

Network Leaming 5 Training
HAL 3
Regression splines S
8
°

j’validation

v Set

Fold 1

Hugely advantageous when coupled with NLP-derived covariates with EHR
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How should we approximate the sampling
distribution of our estimator?
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Due to targeting (step @), the TMLE behaves as
the sample mean of efficient influence function
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32 RCT

Previous Meta | |
3 RCT | |

TMLE Meta
3RCT

0.8 0.9 1.0 1.1
Relative Risk for Mortality



Arriving at the substantive conclusion
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* Sensitivity analysis can be extended to incorporate statistical bias
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TL-based non-parametric sensitivity analysis:
Safety analysis example

Relative risk estimates and 95% confidence intervals under assumed levels of causal bias

Relative Risk Estimate
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Targeted Learning with RWD

Towards
Integration of Non-randomized/ N ized/
Targeted Randomized/interventional inter ional i ional
Learning in
Safety Traditional randomized trial, jals in clinical practice settings Observational
Analysis using elements of RWD th pragmatic elements) studies
Mark van der RWD to assess Selected outcomes T using electronic case Single-arm study Observational cohort
Laan enrollment ria identified using p i with external study
& trial feasibility EHR/claims data, etc. ta (or combination) control arm

RWD to support Mobile technology Case-control study
site selection used to capture
supportive endpoints

Roadmap for

Causal and
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Zt:,ti“itc_a' RWD Challenges — g Targeted Learning
stimation
0 Selection bias argetegiseallis v Roadmap for causal and statistical
Q Intercurrent events path supports regulatory inference
Q Informative missingness decision mal{mg v Realistic statistical model

0 Treatment by indication v Statistical estimand approximates

Q High dimensional covariates answer to causal question

0O Outcome measurement error v Flexible estimation and dimension

0 Statistical model misspecification reduction with Super Learner

Q Differences between external v Model-free sensitivity analysis
controls and single trial arm RCT v Generate RWE with confidence



FDA Funded Demonstration Project

Towards

IR 20 G FDA has funded a two year demonstration project of TL (led
argete

Lol by Susan Gruber) involving
Analysis ® Simulations imitating real world studies demonstrating the
Mark van der roadmap and showcasing that TMLE outperforms
propensity score matching and other current methods of
choice.

e Weekly meetings with senior FDA statisticians and us (S.
Gruber, Rachael Philips, MvdL).

® Monthly meetings updating the leadership of real world
analytics group at FDA.

Towards TL in

e ® Workshop on TL at FDA
approval an . i
safety ® Publications of various articles reporting on findings.

analysis)

® Regular seminars on topics in TL, recorded and made
public.
® Educational short videos on key concepts in TL.
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FDA funded Sentinel Innovation Center on Causal
inference with Real World Data

Sentinel is the FDA national electronic system
transforming the way researchers monitor the safety of
FDA-regulated medical products. Launched in response to
FDA Amendments Act of 2007.

Innovation Center is led by Department of
Pharmacoepidemiology of Harvard University

Working group includes FDA, Pharma, and academic
statisticians.

Full focus on how to apply TL to real world data sets in
Sentinel system, and evaluating its performance relative to
other approaches.



Using Innovation Center to showcase how to set up
TL Statistical Analysis Plan (SAP)

Towards

R ® Specification of a TMLE relies on various choices that can
g be tailored towards precise application in question: e.g.,

QRalVE library of super-learner; truncation method; type of TMLE,
Mark van der e.g., collaborative TMLE or not.

® \We use outcome blind version of data set in question to
set up simulation of (similar) data sets for which we know
the truth.

® We then then select a TMLE that performs best w.r.t.
coverage of 0.95 confidence intervals, bias and mean

Towards TL in squared error, optimizing power while controlling type-I
FDA-d

approval and error and coverage.

safety . i
analysis) e Initial results demonstrate for rare outcomes C-TMLE is

superior thereby providing the choice of SAP, which will
then be applied to real data.
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