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Therapy failure

Drug resistance profile:

ZDV D4T DDI 3TC ABC …

EFV  DLV  NVP

SQV  IDV  NFV  APV LPV

� Predict mutations from 
treatment

� Predict drug resistance 
from mutations

� Predict response to new 
drug combinations

� Find optimal combination
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Mutagenetic tree model

� Let  X = (X1, …, XM) be binary random 

variables indicating the occurrence of 

resistance-associated mutations.

� A mutagenetic tree is a graphical model 

(Bayesian network) given by a tree and 

the constraint probability matrices

such that 
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Example: Accumulation of TAMs under ZDV

� Mutagenetic tree models 

� can be learned efficiently from 
cross-sectional data.

� can be interpreted (and estimated) 
as a process in time, i.e, as a 
model of evolution.
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Lattice of compatible states

� )

Mutagenetic tree State space
(mutational patterns)

tim
e

tim
e
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Mutagenetic trees mixture model

“noise component” 70-219
pathway

215-41
pathway
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Mutagenetic tree hidden Markov model

two clones one clone three clones

time point 1 time point 2 tiime point 3

� Estimated from longitudinal clonal data.
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Genetic barrier

resistant

susceptible

(estimated 

from in vitro

phenotypes)

� Definition: The genetic barrier is the probability of not 
reaching any resistant escape state (= 1 – “risk of escape”).
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Predicting therapy outcome

� 5,875 treatment change episodes (TCEs) 

� 4,584 failures and 1,291 successes:

� Compare different classifiers and feature encodings

failure

success
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Features

� Indicator: All mutations

� Phenotype*: Predicted fold-change in susceptibility

� Activity score*: Exhaustive sequence space search, report 

“worst case” mutants

� Genetic barrier*

� Genetic progression score (GPS): Expected waiting time of 

the mutational pattern in the timed mutagenetic tree

* uses in vitro phenotypic data
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Performance: area under the ROC curve

0.887 ±
0.007

0.867 ±
0.013

0.849 ±
0.004

0.859 ±
0.015

0.866 ±
0.013

0.866 ±
0.013

average

0.860 ±
0.005

0.882 ±
0.006

0.862 ±
0.005

0.856 ±
0.006

0.855 ±
0.007

0.854 ±
0.006

0.853 ±
0.008

+ GPS

0.879 ±

0.006
0.901 ±

0.003
0.880 ±

0.005
0.857 ±

0.011
0.871 ±

0.009
0.884 ±

0.006
0.883 ±

0.003
+ genetic barrier*

0.864 ±
0.005

0.884 ±
0.008

0.865 ±
0.006

0.851 ±
0.008

0.857 ±
0.006

0.863 ±
0.006

0.865 ±
0.006

+ activity*

0.894 ±

0.009
0.902 ±

0.005
0.903 ±

0.004
0.847 ±

0.005
0.902 ±

0.004
0.903 ±

0.004
0.904 ±

0.004
+ phenotype*

0.831 ±
0.008

0.867 ±
0.007

0.823 ±
0.007

0.835 ±
0.007

0.809 ±
0.009

0.825 ±
0.007

0.826

±0.00
6

Indicator

averageLMTLOGRC4.5SVMLSRLDALearning method →

↓ Feature encoding
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ROC curves for logistic model trees
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ROC curves for logistic model trees

1,097 balanced sequences 1,022 balanced TCEs
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www.geno2pheno.org

� THEO –
Therapy Optimizer
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