Objectives

- Present scientific challenges of drug discovery
 - In general
 - In the HIV MDR setting
- Case Studies Capravirine and UK, 427-857

Not the Objective

• To review data on new drugs in development from Pfizer or anyone else

Drug Discovery/Development Pipeline

Multifaceted, complicated, lengthy process

Drug Discovery Pipeline

- Multifaceted, complicated, lengthy process
- Up to 5 years to complete development transition

Patient/Product Profiles

- Identify areas of high unmet medical need
 Sub-optimal or no existing therapies
- Identify differentiation basis for new therapy
 - potency/efficacy
 - resistance profile
 - dose size/frequency
 - safety/tolerability

Lab objectives which address desired profiles

Drug Discovery Pipeline

- Biological entity associated with disease of interest (host or virus origin)
- Appropriate modulation of target anticipated to impact disease in manner consistent with product profile

Target Identification Criteria

- Activity/function essential for viral replication
 - Proven or inferred through biological experimentation
- Drugable target (subjective!)
 - Known small molecule inhibitors
 - Well defined active (binding) site
 - Historical success against related targets

- Conservation across virus variants (where applicable)
- Selectivity vs human proteins

Difficult to incorporate all criteria in single target

CCR5 Validated in Humans?

• Key co-receptor for HIV

• Validated for safety and efficacy

Liu et al., 1996; Samson et al., 1996; Dean et al., 1996; Huang et al., 1996; Michael et al., 1997; Eugen-Olsen et al., 1997

Drug Discovery Pipeline

- Identify molecule(s) which interact with chosen target
- Biological properties attractive/promising but not ideal
- Amenable to analog production

Lead Generation

2000

1500

1000

500

Λ

0

2 10-6

cpm incorporated

- Need reliable and accurate biological assays
 - Routine production of target protein

- Primary biochemical assay

Primary antiviral assay

- Secondary assays (counterscreens)

Lead Generation

2000

1500

1000

500

Λ

0

2 10-6

cpm incorporated

- Need reliable and accurate biological assays
 - Routine production of target protein

- Primary biochemical assay

Primary antiviral assay

- Secondary assays (counterscreens)

Lead Generation

- High-throughput screening
 - Allows for chance discovery of novel inhibitors
- Example: HIV RT non-nucleoside inhibitors
 - Bind to allosteric site on enzyme surface
 - Disrupt enzyme structure/function

Drug Discovery Pipeline

- Prepare/synthesize analogs of leads
- Improve biological properties
- Optimized compound(s) suitable for clinical development

Lead Optimization

Iterative process impacted by technology

Crystallography Process

1) Crystallization

3) Diffraction and Data Collection

5) Structure Solution

Future AV Discovery Needs

Continued understanding of patient and physician needs

Future AV Discovery Needs

- Improvements in drug discovery/development processes
 - Shorten timelines
 - Reduce attrition

HIV Drug Discovery

Specific Challenges

RT Inhibitors (unmet needs)

Nucleosides/Nucleotides

- Activity against resistant strains (SPD 754)
- Lower toxicities

Non-Nucleosides

- Activity against resistant strains (TMC 125, Capravirine ...) Protease Inhibitors (unmet needs)

- Activity against resistant strains (Tipranivir, TMC 114, AG1859)
- Improve drug levels without toxicities

 (cyp3A inhibitors)
- Reduce toxicities
- Reduce pill count, dosing frequency

Entry Inhibitors (unmet needs)

- Oral bioavailability (UK 427,857, Sch D, BMS 488043)
- Cost
- New molecular targets (above)
- Active against resistant strains (above)

Treatment Regimens (unmet needs)

- Simple regimens
- Easily tolerated
- Co-formulated
- Studies in Women and Different Ethnic groups
- Studies in Co-infected Individuals
- Studies in non clade B settings

Strategies to Optimize Antiretroviral Therapy

Havlir. Ann Int Med 1996:124:984.

Resistance

- The selective exclusion of drug as opposed to substrate
- How do they differ can drug design help discover new MDR active agents?

Drug vs Substrate (PR)

- Drug rigid
- Drug immutable
- Barrier to delivery
- Inactivated by metabolism
- Selective pressure for drug binding is absent
- Insoluble, difficult to formulate

- Substrate flexible adapts to new binding site
- Substrate can mutate
- In right place at right time
- Not
- Evolved for transition state binding
- Hydrophobic, generated in situ

Challenges in Discovery (continued)

- Safety in vitro and animal models often inadequate
- Drug interactions hard to predict in efficacious regimens - often geared to pivotal trial design needs

Retrovirus Life Cycle

HIV attachment and fusion: Targets for inhibition

Future Challenges for Industry

- Collaborate on MDR trials and expanded access
- Collaborate on fixed drug combinations
- Collaborate in the MDR setting and the developing world setting