Update on Alternatives to Viral Load Testing

Susan Fiscus

Review of papers and presentations since Jan 2005

- Real time PCR
- P24 antigen
- Cavidi RT VL and phenotype
- Dried blood spots
- Dipstick technology

Real time PCR - DNA

- Luo, et al, CDC, Clin Micro April 2005
- Describe a RT PCR using dried blood spots (903 paper)
- Closed system, used UNG to minimize contamination
- Appears sensitive to 10 copies of DNA/test
- Includes an internal control
- In this MS, only 103 specimens from adults with subtype B and 56 seronegatives were assayed
- No data on other subtypes given, though stated that the assay works with other clades
- Has the assay actually been transferred to a RLS?
- Home brew primers and probes
- Would work best in a centralized lab setting

Real Time PCR - RNA

- Rouet, et al., J Clin Micro, June 2005
- Have set up RT-PCR testing in Abidjan
- Closed system
- Tested 806 individual specimens from adults and kids
- Limit of quantitation ~ 300 cp/ml
- High throughput, very reproducible, ~\$12/test
- 97.9% sensitive cfd to bDNA, correlation r=0.90
- 98% sensitive cfd to Roche RNA, r=0.86
- External standard curve, no internal standard
- Home brew primers and probes
- Equipment very expensive to buy (\$30,000-40,000) and maintain
- Best for centralized testing labs, not peripheral labs

RealTime PCR

- Abstracts # 663 and 665 (Abbott)
- New probe designed to tolerate mismatches due to genetic diversity of HIV
- Linear dynamic range 40-10 million cp/ml
- All subtypes detected
- 100% specific
- Combined with automated sample prep system and tested in Brazil
- 89/91 specimens detected 2 negatives also neg in PCR
- \$\$\$\$\$\$

UP24 ag for infant diagnosis

- Zijenah, et al., JAIDS, Aug 2005
- Tested 164 infants from Zimbabwe (subtype C)
- Used the kit lysis buffer
- Compared to Roche DNA PCR
- \$10/test
- These results are similar to others

Parameter	0-18 mo	0-6 mo	7-18 mo	
Sens	96.7%	98.1%	89.5%	
Spec	96.1%	96.9%	91.1%	

UP24 for infant diagnosis

- De Baets, et al, Clin Diag Lab Immun Jan 2005
- Specimens from children in DRC (many subtypes)
- UP24 tests performed in Belgium
- Sensitivity 92.3%, specificity 100% when performed on liquid plasma (n=150)
- Sensitivity 100%, specificity 100% when performed on dried plasma spots (n=87), unspecified S&S paper

Abbott combo Ab/Ag assay

- Vallar et al #372
- P24 antigen test of 226 plasmas from Cameroon, neg for Ab by standard Abbott EIA
- 2 p24 Ag reactive also + for HIV RNA
- Could be useful for identifying cases of acute infection or for diagnosing infants

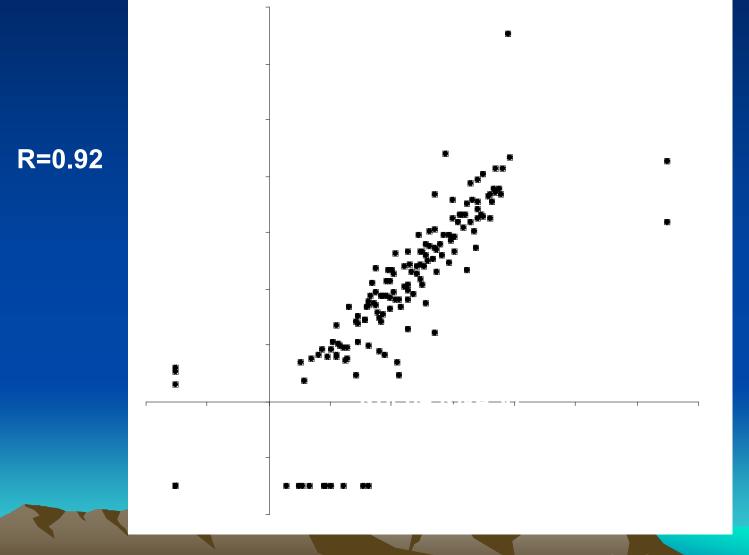
UP24 and Dried Blood Spots

- Patton, et al., Clin Vacc Immunol Jan 2006 (JoBurg)
- Adapted Up24 assay to work with dried blood spots
- Whatman #1 paper
- Washed prepared DBS with external viral lysis buffer (10 RT), then with kit lysis buffer O/N at 4C. The rest of the assay followed package insert
- Very reproducible
- Sensitivity 98.8%, specificity 100% (n=141), compared to Roche RNA, DNA or NASBA RNA
- Correlation between plasma VL and DBS p24ag- r=0.79
- All specimens initially tested within 6 weeks of draw. AT 12 weeks had lost sensitivity.

Up24 antigen and Cavidi RT VL

- Lombart, et al., AIDS, 2005
- 84 samples from 70 subjects from Burkino Faso
- Cavidi V1.0 was compared to Roche RNA, v1.5
- Very reproducible
- In follow-up of serial samples, RT assay gave more concordant results to RNA, than did Up24

Assay	VL - 1.7-4 N=11	VL- 4.1-4.8 n=15	VL - 4.9-6.5 N=58	Spearman correlation
RT colorimetric	0 (0%)	14 (93%)	58 (100%)	
RT Fluorimetric	8 (73%)	15 (100%)	58 (100%)	0.85
Up24	3 (37%)	12 (80%)	50 (86%)	0.39


Cavidi RT VL

- Seyoum, et al, J Med Virol 2006
- 178 samples from 26 subjects
- Assays conducted in Addis Ababa
- Only used 0.2 ml plasma and used version 1.0
- R=0.65 compared to the NucliSens assay

Cavidi RT VL

- Sivapalasingham et al, J Clin Micro Aug 2005
- Used version 2.0, compared to Roche RNA, v1.5
- Specimens from NYC (29) and Cameroon (21)
- Limit of detection ~2000 cp/ml
- Overall concordance with Roche was 76%
- Cavidi false negatives all had VL <3000 cp/ml and were all from NY
- Correlation, r=0.869
- All testing was done in NY
- \$28.13/test, 3 days, 1 ml plasma

Cavidi RT VL and Phenotype

Fiscus CROI 2006

EFV exposure, genotypes and Cavidi Phenotype

Sample EFV us	EFV use	Cavidi phenotype results	Genotype Results							
			L100l (n=1)	V108l (n=1)	K103N (n=10)	V106M (n=0)	Y181C (n=3)	Y188L (n=2)	G190A (n=2)	G190S (n=1)
988	Current	Resistant								
5002	Current	Resistant								
5286	Current	Resistant								
879	Past	Resistant								
1522	Past	Resistant								
2166	Past	Resistant								
3398	Past	Resistant								
5061	Past	Resistant								
6694	Past	Resistant								
1817	Past	Resistant								
7218	Past	Resistant								
66	Past	Resistant								
1511	Past	Resistant								
1892	Past	Resistant								
5605	Past	Resistant								
2056	Never	Resistant								
6023	Never	Resistant								
601	Current	Sensitive								
665	Past	Sensitive								
1592	Past	Sensitive								
4864	Past	Sensitive								
368	Never	Sensitive								
1125	Never	Sensitive								
1002	Never	Sensitive								
<u> </u>	Never	Sensitive								
7253	Never	Sensitive								

Dried Blood Spots

- Sherman, et al., JAIDS April 2005
 - DBS at 6 wk Whatman #1 paper, 9-19mo storage at room temp with no desicant, 288 specimens
 - Easy extraction procedure
 - Roche HIV DNA, v 1.5
 - 100% sensitivity; 99.6% specificity
- Uttayamakul, et al. J Virol Methods 2005
 - 100 sero-, 109 sero+
 - DNA PCR Whatman 94% sens 100% spec
 Isocode 89.4% sens 100% spec
 - RNA NucliSens QL 89.7% sens 97.5% spec
 - RNA NS QT DBS cfd Plasma r=0.817
- Lou RT PCR
- Patton p24 antigen and DBS

DBS at CROI 2006

- Garcia-Lerma # 666 used for surveillance of drug resistance in Cameroon (stored at -20 2-3 yr) and VQA panels – one stored at -20, one at -70 and one at RT
- 5/6 DBS stored at -20 and -70 could be sequenced; 0/3 stored at RT
- 34/37 (92%) of Cameroonian DBS amplified
- Proviral DNA contributed significantly, but were usually concordant with plasma sequence

DPS to Monitor Resistance

- Dachraoui Poster #549
- 20ul DPS from Tunisian subjects
- Stored at RT with desicant, mailed to France within 5-10 days, then stored at -80
- 67-77% of PR, RT, and gp41 sequenced successfully
- 87-100% sensitivity with VL >10,000
- Less successful with lower VL

Infant Diagnosis - #715

- Creek et al
- DBS collection and testing in Botswana 6-17 weeks
- 61 DBS 100% concordance with Roche DNA in validation study
- Only 2% of 822 DBS rejected, results TAT ~8 days

Point of Care Testing - Dipstick

- Dineva, et al., J Clin Micro Aug 2005
- Multiplex dipstick for detecting HBV, HCV and HIV nucleic acids
- Extraction High Pure kit (Roche)
- Amplification Taqman realtime RT-PCR
- Detection dipstick 15 min
- Detection limits 50IU HBV DNA, 125 IU HCV RNA, 500 IU HIV RNA

Conclusions (1)

- The field is moving forward rapidly
- RT PCR equipment still expensive with maintenance issues, largely homebrew, best suited for centralized lab setting
- P24 antigen has been successfully used for infant diagnosis in many settings, but still struggling for acceptance compared to NAT
- Cavidi VL and phenotype assay very promising, but need more data

Conclusions (2)

- DBS (and DPS) are gathering wide acceptance for diagnosis and resistance surveillance, but room temperature storage is proving to be a problem for proteins and DNA. Will probably need to maintain the cold chain which may reduce utility. RNA seems to have more stability at ambient temperature
- POC testing, such as Helen Lee's dipstick, will continue to be the Holy Grail, but need considerable more work
- Infant diagnosis and monitoring at peripheral sites may have to rely on detection or quantitation of RNA through the use of DBS or RNAlater